
 Implementing SAS/IntrNet® for Clinical Information Management
Sy Truong, Meta-Xceed, Inc., Fremont, CA

Abstract
Clinical information management is a challenging and
complex task in an environment of changing regulatory
requirements. Rather than adding extra layers of
abstraction to bewilder users, this paper will demonstrate
a new system called TRIALEX™ which simplifies the
process of managing a clinical trial. The TRIALEX™

System represents the next generation in information
delivery since it goes beyond the client/server model and
is deployed completely within the thin client model. This
system was developed entirely in SAS/IntrNet® to deliver
an intuitive Web interface for accessibility and ease of
use. This paper will also address some of the unique
challenges faced when developing within a thin client
architecture.

Introduction
There are many tasks involved during the implementation
of a clinical data warehouse that can be automated. This
can take place at the beginning design stage and carried
through to the end product, the electronic submission.
Early on in the design stage, it is important to use tools
that not only automate, but also standardize objects within
the clinical information system. This structure will set the
foundation for the rest of the process. Among some of the
design and implementation tasks include:

• Attribute Set up and Standardization
• Clinical Object Management
• Dependency Management
• Refreshing and Scheduling
• Information Delivery
• Review and Validation
• Documentation

These items are established during the design stage and
are consistently carried out during the operations and
conduct of a study. It is therefore crucial for the tools to
have an intuitive interface for getting started quickly,
while also having an iterative production mode to
efficiently manage large amounts of information.

Attribute Set up and Standardization
An effective way to standardize objects within a clinical
information system is to set up a hierarchy representing
the organizational structure and work flow. This will ease
the transition from managing information within the
computing environment to the real world. An example of
such a hierarchy is:

figure 1

Standards sometimes come from the day to day operations
as analysts see re-occurring patterns. This usually
happens lower in the hierarchy but once accepted as a
standard, they are enforced from top down. For example,
if a company name needs to be part of all reports in the
header section, this can be defined at the global level.

 figure 2

This header attribute of the report object is set to the
object template that is inherited when new objects are
created lower in the hierarchy.

figure 3

There may be cases that contain exceptions so the object

has the flexibility to override standardized inherited
attributes. However, standards are applied by default. A
report object is just one example of how an object model
can be used for standardization. This methodology can
also be applied to other objects such as data, programs,
and other user-defined objects.

Clinical Object Management
Standardization is a good example of the benefits gained
from organizing clinical information in an object-oriented
model. The most common objects found in a clinical
information system include:

Program Report Data

New user-defined objects can be created in addition to
these common objects. For example, if an organization
has developed a set of transformation macros, statistical
models or algorithms that may be useful in multiple
projects, new objects can be created to manage this and
then integrated into the TRIALEX™ System.

There are three distinct types of object attributes. They
include the following: common, object specific and user-
defined attributes. All objects have standard common
attributes such as object name, description and date/time
of modification. There are also attributes that are specific
to each object type. For example, a report object contains
footers and page size attributes that are found only in a
report.

FOOTER1 FOOTER2 LINESIZE PAGESIZE

c:\Programs\
X_XXXX.sas
and this is
some text
that is long

Generated: [datetime] By:
[userid] Data:
XXXXXX.sd2 Status:
Interim
(Page XXX of YYY)

134 51

c:\Programs\l
_demog.sas

Generated: [datetime] By:
[userid] Data: a_ptinfo.sd2
Status: Interim
(Page XXX of YYY)

134 51

A program object, on the other hand, contains attributes
which are specific to programs, such as a header section
to store program comments.

A third kind of object attributes, which is different from
the common and object specific attributes, is the user-
defined extended attributes. For example, a data set can
contain common attributes such as data set names and
data set labels. It also contains object specific attributes
such as variable names and variable types. An example
of a user-defined attribute for a data set could be the
DEFINE statement used in a PROC REPORT. This
attribute is customizable and will contain meaning
specific to the organization where it is implemented.

These three types of object attributes allow for
extendibility and flexibility in the management of clinical
objects, while retaining structure for implementing
standards.
Dependency Management
Once objects in a clinical information system have been
set up in a standardized manner, understanding the
relationship among the objects is the key to managing
them. The relationship describes the flow of information
between objects to form dependencies.

figure 4

Managing these dependencies becomes increasingly
challenging as more objects are added to a project. The
nature of clinical research also creates an environment of
constant change, which adds to the complexity. The two
main characteristics used in managing the dependencies
include:

• The hierarchical order among the relationships
between objects

• The time points at which the relationships were
established and last changed

The TRIALEX™ System manages this by storing the
information in a SAS® data set. This allows for quick
updates and access. A partial view of this data from the
above diagram would be:

OBJNAME OBJTYPE PARENT OBJID

Job Name Root 12473857818

l_demog Report 12473857818 12490469155

l_adv Report 12473857818 12490469314

l_meds Report 12473857818 12490469480

Testing Report 12473974979 12473178633

adv.sas Program 12490469314 12490472146

Meds.sas Program 12490469480 12490472254

Demog.sas Program 12490469155 12490472412

Demog.sd2 Data 12490472412 12490472580

Once these characteristics are captured, it is then possible
to manage the objects by having the ability to refresh the
data flow in the right order and apply this to only those
objects that have been changed.

Refreshing and Scheduling

The development process of managing a clinical
warehouse requires multiple iterations. This is driven
primarily by the changes in the data during the conduct of
a trial. The changes in statistical models and reporting
requirements also add to the need for frequent updates. It
is important to understand the order of dependencies
within the clinical warehouse, but knowing this by itself is
not sufficient to optimally refresh a complex clinical
information system. If the order is the only information
acquired, the entire warehouse has to be refreshed in order
to ensure that the information delivered is up to date.
This requires large amounts of resources, especially when
this process is repeated. By understanding when each
object has been last updated, it is possible to refresh only
those objects which are affected by the latest changes.
This commonly occurs with the data but it also happens
when there are changes to a program algorithm or
reporting requirement. With this combined knowledge,
the system can strategically apply updates only to objects
which have been changed when compared to the previous
update.

During the conduct of a study, the source data is changed
periodically. This affects the analysis and reporting of
clinical reports. It is useful during these situations to have
the refresh occur on a regular schedule. For example, if
the data base is to be updated every night, a schedule can
be set up to repeat the refresh on a nightly basis after the
data has changed. This will allow the analysts and
statisticians to get the latest information automatically in
an optimal manner.

figure 5

There are many options possible for setting up a schedule
for updates. The interface allows for precise control over
these options while remaining relatively easy to set up.

Information Delivery

The scheduler is a useful tool for automating updates to
the clinical data warehouse, but it is also useful when
implemented in conjunction with information delivery.
The scheduler by default generates a log of the job
executed and sends this via email to the person who
initiated the schedule, after its completion.

figure 6

This contains hyperlinks in a form of a table of contents
(TOC) which goes directly to the web server where the
reports have been published. In addition, an option can be
set for the scheduler to automatically email the resulting
TOC to specified users within the organization.

figure 7

This automates the delivery of the information with the
use of email and an Intranet. There are two tools used
within the scheduled job which enable this information
delivery. They include:

• txt2html – tool to convert report text to html

• TOC – table of contents generator

By default, SAS programs produce reports in text format.
The txt2html tool automates the generation of the html
and publishes this directly to the web server in the proper
location.

The TRIALEX™ System organizes the directory structure
on the web server in the same manner in which the project
directories are developed. The process is therefore
transparent to the user when he or she generates reports to
a study directory, since it is mirrored on the web server.
This allows the analyst to develop SAS programs which
produce ASCII text reports while at the same time
updating the equivalent html version on the web server.

Publishing reports directly to a web server is an elegant
way of distributing information because the information is
instantly available within an Intranet. This overcomes the
inefficiencies of delivering printed reports. Another
advantage to generating reports directly to a web server is
that it is one step away from creating the final PDF
document for electronic submission. The TRIALEX™

System is integrated with Adobe Acrobat® 4.0 to convert
all html reports for a specified project into one PDF
document while retaining all the hyperlinks and proper
page breaks. Similar to html, the PDF document can be
delivered to internal members of the group who may have
varying desktops (i.e. Macintosh, PC, and UNIX).
However, the PDF document does have some
characteristics which are different from html. These
include:

• It is self contained without the need for a web server.

• It can be printed with more consistent results.

• Password protection can be applied without the need
of a server.

• It is locked from having changes or edits applied.

These characteristics make PDF files more convenient to
distribute to members outside the organization such as
collaboration partners or CROs (clinical research
organizations). The primary external partner, however, is
the FDA. PDF format is very useful in delivering
information to the FDA since it is the standard format for
electronic submission.

A key to locating the information of interest is having a
table of contents. TOC is another tool which is used in
information delivery and in other ways. In the example of
the scheduler, it generates a section of the email which
links directly to the reports on the web server. HTML is
one type of output which it generates but it can also be
generated in RTF format. This becomes useful for
distribution during the authoring of a statistical report.

This is used in conjunction with a tool similar to the
txt2html, named txt2rtf. All reports can be generated in
RTF along with an accompanying table of contents which
contains hyperlinks.

figure 8

This is very useful for the statistician or the author of the
final statistical report, since he or she can cut and paste
references to appended listings and tables from the TOC
directly into the report. Not only does this contain the
title text of the appendix, but it also retains the hyperlink
to the actual appendix. The final statistical report
authored in a MS Word document will then contain
hyperlinks directly to the appended tables and listings
without the author having to hard code the hyperlink
paths manually.

Review and Validation

Delivering information within an organization is the first
step towards facilitating a review process. The review
process usually consists of a team with different members
playing different roles. The two primary roles consist of:

• The author of the object

• The reviewer of the object

The author initiates the creation of a clinical object. The
reviewer can be an active collaborator by supplying
needed feedback and corrections.

figure 9

Once the review discussion option is set, an email is sent
to all the members of the group requesting them to
participate in the discussion. If the situation requires that
the object be updated with additional information or
corrections, the reviewer can respond with comments
detailing the needed tasks.

The author can apply the corrections and reply to the
reviewer’s comments with additional comments and
updates to the object. This discussion is captured in a
database which is organized by the discussion thread.
This model for managing discussions is used commonly
in electronic bulletin boards. The advantage that this has
over meetings or emails is that it stores the discussion
centrally in a “project memory” database which is
searchable. This creates an audit trail, which becomes
useful when reviewing how a decision was derived and
can also be useful for validation.

The review tool is a great way for tracking decisions
within a group. There are situations however when an
audit trail of one person is required for validation
purposes. Usually the one person is the author of the
clinical object. An example of this can be applied to the
program object. This object contains common attributes
such as the time it was last modified. This helps in the
management of the audit trail but it also contains object
specific attributes designed for source control
management.

PRGNAME PRGDESC Chktime Ch
kst
at

chkby

demog.sas Demographic
Listing

31Jul1999:
13:13:30

out syman

trtfile.sas Treatment File 30Jul1999:
07:57:57

in

advsum.sas Adverse Event
Summary

30Jul1999:
07:57:57

in

A separate source control data set interacts with the
clinical object to track the history of the program along

with associated comments explaining each programming
session. This information along with the header comment
section of the program object creates a good audit trail of
the program object used for both validation and
documentation.

Documentation

The same technologies used for managing dependencies,
information delivery, review and validation are also used
in automating the documentation process. The purpose of
documentation is for team members to keep track of all
the information being managed and to understand the data
flow at all points of the development cycle. This helps
team members stay in touch with the constant changes,
and it also helps new team members transition onto the
project by giving them a road map showing the flow of
information.

figure 10

This diagrams looks identical to the ones used during the
dependency management. The difference is in the
navigation. Rather than having the ability to edit each
object, the drill down will present a view of the object’s
attributes. This view may be several layers deep as in the
example of the data object. In the first layer of the data
object, there are attributes similar to a PROC
CONTENTS. The formats also have a drill down to more
details, showing the values of the coded values. This
gives a thorough documentation of the object organized in
a manner that is easy to navigate. Since this is a useful
tool for all team members to view at any point in the
development cycle, the documentation can be generated at
any time.

Implementation

There are too many modules in the TRIALEX™ system to
allow for a comprehensive elaboration. Instead, this

section will expand on a few components and techniques.
These components represent different aspects of the
system so that these examples will be representative of
the various technologies implemented. The three
components this section will explore include:

• Txt2hml, an API (application programmer’s
interface) to the TRIALEX™ system used for
generating html documents from text reports

• HTML wizards, implementation of CGI and Java
Script to accomplish an effective user interface

• Object Relationship Diagram, implementation of
html tables and DHTML to accomplish dependency
diagrams

txt2html
This tool is classified as an API (application
programmer’s interface) because it is invoked from a SAS
program. Although it is developed as a SCL program, it
is invoked with a macro call. This interface was chosen
because macro is a familiar construct for SAS
programmers. The syntax for this tool is:

%txt2html(repname=report name,
 path=new html path [optional],
 titleby=html title variable
 [optional]
);

The only required parameter is the report object name.
By default, the system can figure out the path location on
the web server to generate the new html file. The path
parameter is therefore optional in the event where the user
wants to hard code the location. The titleby option
specifies the column from the report object that the html
title is derived from.

The TRIALEX™ system is configured with the location of
the web server root (i.e. c:\webroot) and the analysis root
(i.e. c:\analysis). The report object contains the path to
the ASCII version of the report. For example, the
demographic listing has the path:

C:\analysis\project100\study100\listings

In this case, the location of the newly created html file is
algorithmically derived to the location:

C:\webroot\project100\study100\listings

This is derived by swapping out the analysis root and
replacing it with the web root. By design, the structure of
the web server mirrors the analysis structure. It is
therefore possible to dynamically derive the destination of
newly created html files on the web sever.

There is a problem with creating html files from ASCII
reports since text reports were originally intended to be
printed on physical pages of paper. HTML, on the other

hand, is intended to be viewed on a browser and does not
by default come with the concept of a page. This
becomes a problem when html reports are printed or
converted to PDF since page breaks are lost. A work
around to this problem is integrated into the txt2html tool.
This is accomplished by encapsulating each page within
the report into an HTML table cell with the width and
height set to one hundred percent. This creates a concept
of a page so page breaks will occur at the right places
during printing and during PDF conversion. The example
HTML code for this is:

<div align="center"><center>
<table width="100%" height="100%">
 <tr>
 <td><pre>
This is the content of the report
Page 1
 </pre>
 </td>
 </tr>
</table>
</center></div>

txt2html is one example of a tool within the API category,
which allows programmers to access the TRIALEX™

system tools directly from their programs. Other APIs
allow programmers to derive new clinical objects, retrieve
their attributes and access TRIALEX™ system
information and tools.

HTML Wizards
An effective user interface is one that is intuitive for the
user and does not require a steep learning curve. The use
of wizards fits this requirement when implemented
properly. Wizards are a set of dialog boxes linked
together in a linear fashion with buttons including
previous, next, cancel, and finish. This is commonly
implemented in Windows applications when the goal is to
collect information in sequential order. If the information
needed is not collected or organized in a linear fashion, a
tabbed dialog box is more appropriate. For sequential
interactions, wizards are the most intuitive interface.

There are some challenges involved when implementing
this with an html front-end since by the nature of this
environment, it is stateless. This means that the server
does not know the state of the user once the html pages
are delivered to the browser. The system has to create a
mechanism to track the users so that it can present pages
representing dialog boxes of a wizard, in the proper
sequence. This is accomplished by the use of hidden
fields which keep track of a user’s location or state. For
example, the html form contains the following hidden
fields:

<form name="myForm"
 action="/cgi-bin/broker.exe">
<input type="hidden" name="_PROGRAM"
 value="TRIALEX.TRIALEX.wizard.scl">
<input type="hidden" name="_SERVICE"
 value="default">
<input type="hidden" name="form"

 value="wizard page 1">
<input type="hidden" name="usrname"
 value="syman">
<input type="hidden" name="session"
 value="-0.32336358235063">

…

This html page is assigned a unique session identifier
number, which is also kept on the server. When the form
request comes back to the server, it is matched up and
identified. Other fields which help identify the form
include the form field and the user name. This technique
allows for the system to track each form and therefore
enable the management of sequential dialog boxes of a
wizard.

Another way of implementing a wizard is to string the
dialog boxes into one long html form with spaces between
the dialog boxes to create an appearance of separate
screens. The navigation between the dialog boxes are
handled by Java Script. An example of a simple wizard
with only two dialog box is shown here shrunken down to
show both dialog boxes in one long screen as seen in
figure 11.

The Java Script code segment to handle the Next button
is:

<input type="button" value=" Next >"
name="next" onClick="linkHandler('#Page2')">

function linkHandler(loc){
 window.location.href = loc;
 if (loc=="#Page1")
 document.newstdy.stdyname.focus();
 if (loc=="#Page2")
 document.newstdy.finishb.focus();
}

Once the next button is clicked, the location of the
browser navigates to the location of page 2, which is an
anchor lower in the same page. Since the page is long,
this jump appears to navigate from one dialog box of the
wizard to the next. This same technique is applied to the
back button. The advantage of this method is that it does
not go back to the server to retrieve the next page so the
response is very fast. The disadvantage is if there is
information from the server that is required in between
the wizard dialog boxes, then this method will not work.
There are situations where a combination of the two
methods can create a seamless series of wizard dialog
boxes. It may appear to be fragmented when viewed from
the development side but when implemented properly,
this will appear very smooth and intuitive to the user.

figure 11

Object Relationship Diagram
Diagrams are very effective at conveying data flow,
especially for complex information systems. The object
relationship diagrams (ORD) used in the TRIALEX™

system is used both in the design stages for creating the
dependencies between objects and also for
documentation. Rather than explaining all aspects of the
implementation of the ORD, which includes adding and

deleting objects to the diagram, this section will focus on
techniques used to display the ORD onto a web page.

Before generating the html to display the diagram, the
information pertaining to the diagram needs to be
captured and organized. A view of this data is:

OBJNAME OBJTYPE PARENT OBJID

Job Name Root 12473857818

l_demog Report 12473857818 12490469155

l_adv report 12473857818 12490469314

l_meds report 12473857818 12490469480

Testing report 12473974979 12473178633

Adv.sas program 12490469314 12490472146

Meds.sas program 12490469480 12490472254

Demog.sas program 12490469155 12490472412

Demog.sd2 data 12490472412 12490472580

Adv.sd2 data 12490472146 12490472711

Meds.sd2 data 12490472254 12490472798

trt.sd2 data 12490472146 12490472903

trt.sd2 data 12490472254 12490473074

Note that each object has a unique identifier that is the
object ID number. It also contains a parent column which
identifies the object upon which it is dependent. This
allows the system to figure out the order in which to
display each object.

The TRIALEX™ system generates each object in its own
html table independently before combining them into the
final ORD. For example, the first report object, l_demog
has the html code generated as:

<table border="0" cellpadding="0">
 <tr>
 <td align="center">
 <a HREF="javascript:doMenu('l_demog',
 '12473857818','1','12490469155')">
 <img src="report.gif" width="14" height="14"
 border="0">

 <small>l_demog
 </small></td>
 <td><img src="arrow1.gif" width="36"
 height="14"> </td>
 <td>
 <!--- #include(12490472412) //-->
 </td>
 </tr>
</table>

The object type column determines the proper GIF image
to include. The algorithm also counts how many
dependent “children” the object has to determine the
proper arrow image. There is also a comment text
describing any dependents that may need to be included
following the current object. A Java Script menu is also
invoked when the user clicks on the object. The menu
would look like figure 12.

figure 12

After all objects have their own table generated, a second
process parses through each item searching for the
comment text with the “#include” statement. Each times
it sees this, it pastes the html table for the specified object
in place of the comment text. This algorithm recursively
loops through all the items and draws one large html table
with cells containing other html tables to form the entire
object relation diagram. Since the html tables are set up
without any width applied to the borders of each cell, the
users see one smooth image containing the flow diagram.
The borders are never shown but are just for
demonstrative purposes; this is the same diagram with the
border set to have a value of 1.

figure 13

The sizes of the html tables are also unspecified so if the
diagram is large, it can resize to fit whatever the browser
is stretched to. This diagram can therefore be viewed on
many different resolution monitors since it is redrawn to
match the size of the screen. This also applies to printed
versions of the diagram since the size of the tables are
redrawn for the specified printer on which it is printed.

Conclusion
Managing a clinical information system is a complex task
in a dynamic and ever changing research environment
with challenging regulatory requirements. Facing up to
this challenge requires innovative solutions which
empower the group to work collaboratively internally
while also being able to deliver information to outside
organizations including the FDA. This means pushing the
edge of technologies such as SAS/IntrNet® and also
integrating it with other web technologies such as email,
Java Script and dynamic html. It is also useful to
implement existing technology models and adapt them to
clinical information as in object-oriented structure and
electronic bulletin board discussions.

It is important to keep a clear vision of the final
deliverable when working with large amounts of
information. The goal is to deliver consistent and
accurate information to the FDA in the format that is
required by their guidelines. If this vision is clear from
early on during the design stage of a clinical information
management system, and then implemented through to the
resulting electronic submission, chances for success are
greatly increased.

ACKNOWLEGEMENTS
We wish to thank the “team” at Pharmacyclics, Inc. including
David Eber and Kathy Boussina for their ideas and contributions
to this project.

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries.

® indicates USA registration.

Author:
Sy Truong
Meta-Xceed, Inc.
sy.truong@meta-x.com
http://www.meta-x.com

	Implementing SAS/IntrNet® for Clinical Information Management
	Abstract
	Introduction
	Attribute Set up and Standardization
	HTML Wizards
	
	
	Object Relationship Diagram

	Conclusion

