
Paper 131

Automating the Management of a Data Warehouse
Sy Truong, Meta-Xceed, Inc., Fremont, CA

Kathy Boussina, Genentech, Inc., South San Francisco, CA

Overview
Clinical trial reports and clinical data warehousing have
traditionally been two different streams that merge at the
final reporting stage. The function of generating the final
clinical trial report and the delivery of a clinical data
warehouse is often carried out by different departments.
The transfer of information is frequently paper-driven and
less than seamless. As the FDA guidelines evolve to meet
the upcoming goals for paperless submissions and as the
technology emerges, it becomes increasingly critical to
improve areas of streamlining and automation.

Genentech recently launched the electronic reporting pilot
project to streamline the process to meet the FDA
electronic reporting requirements. The goal of this project
was to link clinical trial reports to SAS output and to data,
thereby integrating publishing into the workflow. Hence,
the need to publish SAS output and data is no longer
occurring at the end of the process.

To integrate output, data and documents from the outset
and throughout the report development process, an
application, known as e-DOC, was created for the pilot
project. e-DOC facilitates broad and early access to
information. It automates the management of the data
warehouse by identifying dependencies; graphically
representing the relationship of the SAS output to the data
warehouse and the data warehouse to source data. It also
provides for the ability to view detailed metadata
(information about the data). The information is
encapsulated and provided in a hyperlinked table of
contents that fits neatly into the final clinical trial report.

Electronic Submission
Several components to a final clinical trial report
constitute the complete deliverable. These include: the
report text, the in-text tables, the report appendices (SAS
output such as summary tables, by-patient listings and
graphs), and patient profiles (case report tabulations).
The objective of the Genentech, Inc. electronic reporting
pilot project was to integrate the SAS report production
activities into the document production activities. The
goal was to develop a single process and workflow which
addresses a final clinical trial report as a standalone
deliverable or as part of a complete product licensing
application or new drug application. The same
procedures, documentation and overall workflow would
be applicable for a single report or a complete FDA
submission. The pilot project was conducted on an NT
server using Office 97 in order to take advantage of Word
97 hyperlinking capabilities. Early in the project it
became essential to track data from its source to SAS
program(s) (transformation or summarization and

reporting programs) and from there, to the SAS output.
This is not only important information for SAS
programmers on a project but also valuable
documentation to internal (Genentech) or external (FDA)
reviewers.

The datasets as a component of a final report placed
further emphasis on the need to provide documentation of
the metadata and the relationship of analyses to datasets.
Hyperlinked footers on summary tables and listings
provided for SAS output to dataset or metadata access,
while a supplemental document graphically depicted the
dataset and the tables or listings produced from the
dataset. This allowed for two opposing views of the same
information. Both perspectives were adopted due to the
broad audience for a clinical trial report including
clinicians, statisticians, and FDA reviewers. The adoption
of e-DOC to determine the dependencies and relationships
defined by hyperlinks allowed varying views to be used
within the application. Furthermore, in defining these
relationships, we were able to take the integration of data
and documents one step further by providing
programmatically generated hyperlinks from one report
component to the next. The e-DOC application was
successful in facilitating the integration of the electronic
report components for this pilot project.

What is e-DOC
e-DOC is a cross platform tool used to document data
warehouses created from SAS. e-DOC’s primary function
is to produce documentation illustrating the data flow of
the data warehouse. In addition, this documentation can
also be used to manage many of the warehouse
components. Since the documentation is produced in
HTML with easy navigation, the audience could range
from technical users such as programmers and warehouse
administrators to less technical customers who review
information from the data warehouse. This tool,
developed using SAS, is designed to analyze data
warehouses created from SAS programs. It was tested for
SAS 6.12 on Windows NT/95 and Solaris UNIX.

e-DOC consists of tools to aid the documentation process
of the data warehouse. These tools are used during and
after the development of a project to capture the most up
to date information. It is intended to be integrated into the
workflow so it would not hinder the development cycle of
building a data warehouse. The main e-DOC tools are:

• mk_html
• e-TOC
• logeval
• e-map

mk_html Component
The mk_html tool, short for “make html,” captures SAS
output reports and converts them into HTML format.
This can be executed during the report run time or after all
reports are generated. Since the reports generated from
SAS are mostly stored as ASCII text files, there is
minimum conversion required between the original report
and the final HTML version. All text is kept unchanged
with the formatted HTML markup tag (<pre>) so that the
text columns align properly.

One feature of mk_html which is specific to Genentech,
Inc. reports is the formatting of its source line. Source
line is one line of text that appears at the bottom of all
reports stating the program name and related data sources.
An example source line is:

Source: Biostatistics(truong)
pgm(\\NT_SAS\cardio\drug\drugxyz\final\biostat\t_lab2)
data(..\outdata_lab)

The mk_html tool automatically adds hyperlinks to the
location of the SAS program and data. This results in an
HTML page which is useful for further investigation of
the data and programs involved in producing the report.

e-TOC Component
e-TOC is used to create a table of contents for all reports
generated from the specified data warehouse. As a
standalone tool, e-TOC produces an RTF file with
hyperlinks as shown:

e-TOC uses Genentech's standard reporting structure to
capture titles and descriptions of these reports
programmatically. This frees users from having to re-type
this information and therefore reduces potential
typographical errors.

Logeval Component
Logeval is the brain of e-DOC since it determines the data
flow relationships between one program to the next. It
does this by logically parsing the log files produced from
the SAS programs that comprise the data warehouse.

Approaches other then logeval were explored, but these
approaches had limitations and were problematic.
One approach was to capture the SAS environment at the
start of a SAS session. This included all the libnames and
all datasets within these libnames. The dataset created
date and modified date were also recorded. Once the SAS
session was completed, a similar environment capture
algorithm was executed and stored. The idea was that a
comparison between the before and after capture would
document changes made in this particular SAS program.
The problem with this approach was that if another SAS
process were running at the same time, the data changes
within the same libname would also appear in the capture.
This overlapping session proved to be problematic and
was the main reason why this approach was not pursued.

Another approach was to have users follow a strict
documentation practice within each SAS program. This
suggested that all programs have a strict format with all
the information documented in the header of each SAS
program as comments. The SAS comments are compiled
into one location for documentation. This approach
proved to also be problematic since some programs did
not have the header comments updated. This lead to
discrepancies since data transformation logic within each
program did not always reflect the comments.

At first, the notion of parsing log files in a systematic
algorithm to capture information for documentation
seemed a daunting task. This reverse engineering
approach for the logeval algorithm was only entertained as
a last resort after exploring the alternatives. There were
many cases within the log files which did prove to be time
consuming but there were also messages in SAS log files
which were logical and suitable for this approach.

During log file evaluation, logeval’s first task is to
differentiate between SAS comments and real submitted
SAS code. There are two distinct styles of comment
notation. One uses a (/*) to start and (*/) to end while
another just uses asterisks with a semicolon to end. A
SCL program is used in this parsing since it is efficient
and has many essential text manipulation functions. An
example of logic to evaluate the beginning of the first
style of comments is:

*** Check for comment style (1) ***;
if (index(line,"/*") > 0) or
 (index(line,"*/") > 0) then do;

 *** note global comment status ***;
 com_on = 1;

A similar index function is used to check for the start and
stop of the second kind of SAS comments.

There are many other checks logeval performs, but it is
not possible to fully explain them all in this paper.
However, a few algorithms are shown below to give you a
flavor of this challenging task. Before data can be

analyzed, libnames must be captured. An example code
segment for handling this is:

*** Analyze libnames ***;
if index(line3,"NOTE: Libref") > 0 and
 index(line3,"was successfully assigned as
follows:") > 0
 then do;

 *** Check for line breaks ***;
 if index(libline," Physical Name: ") = 0
 then do;

Fortunately, the SAS log does contain some consistent
references to libnames which have been assigned. A
physical path is also captured which is used to verify its
existence. This is important if the data warehouse is in a
constant state of change.

A similar approach is used to capture newly created
datasets. The code segment example for this is:

*** Capture output data sets ***;
if index(line3,"NOTE: The data set") > 0 and
 index(line3,"has") > 0 and
 index(line3,"variables.") and
 index(line3," WORK.") = 0 then do;

In most situations, the same algorithm applied to a SAS
log executed on a UNIX server would also work on
Windows PC. There are situations however which differ.
A system macro variable is used to capture what
Operating System (OS) is currently in use. This allows
logeval to adjust accordingly on OS specific information
as shown here:

if (cur_os = "WIN_95") or
 (cur_os = "WIN_NTSV") then do;
 *** Look for page breaks ***;
 …

if cur_os = "Solaris" then do;
 *** Look for page breaks ***;

All the information gathered during the evaluation of the
log file is stored in a SAS dataset. This information is
later used to determine how datasets are read into
programs and how they are created. A partial view of a
dataset would look like this:

The INOUT status of each dataset is recorded in relation
to each program that comes in contact with the dataset.
This information is later used to document the data flow
between datasets and programs.

e-map Component
A picture is worth a thousand words. This is especially
true when documenting the flow of data for a complex
data warehouse. e-map automatically generates a
graphical chart that illustrates how data moves through the
warehouse. HTML was a natural format for e-map since
it has these advantages:

• Ability to display graphical images and text to
represent objects such as data and programs

• Relative ease of generating image and text layout
using the markup language tags

• Hyperlinks capability to modularize documents while
linking them all together

The first task for e-map is to evaluate the dataset which
logeval creates and then to organize that information in a
manner used to generate the graphical diagram. For
efficiency, the dataset values are strategically placed into
SCL lists as shown in the following code segment.

*** Capture program names into list ***;
dsid = open('work.x_data','i');
i = 1;
do while (fetchobs(dsid,i)=0);
 prognm = getvarc(dsid,varnum(dsid,
 'prognm'));
 rc = insertc(proutlst,prognm,i);
 i = i + 1;
end;
rc = close(dsid);

After all the programs are captured into a list, e-map
draws a diagram for each program and its relationship to
datasets. This relationship could be the creation of
datasets or the reading of datasets as input. Each object in
this diagram is represented by a GIF image as shown here:

The program object has hyperlink buttons marked with
letters (P) and (L). If you were to click on this area, (P)
would link to the program source code and (L) would link
to the log. In a similar manner, the data object has
hyperlinks marked with letters (M) and (D). The (M)
links to the metadata, similar to what is found in a PROC
CONTENTS. The (D) links to the actual values of the
dataset. On the PC version, this would open the SAS
Viewer tool and display values of variables inside each
dataset. The arrows are used to connect the object to
show how the data flows.

e-map generates the HTML code which points to the

proper GIF images. In the example of the arrows, the
image could show four joining arrows (as shown above)
or it could be two joining arrows. An index variable in
the program keeps track of how many arrows as shown in
this algorithm:

In this case, the webhost resolves to the location where the
image is stored on the web server while the index resolves
to a number which corresponds to the proper joining
arrow image.

e-map generates the HTML in modules. Each program
object gets generated with the associated data and arrows
individually. This HTML module is stored in an HTML
table cell. The final data flow diagram joins these tables
cells in the proper position to form the whole picture. The
HTML table cells’ border thickness is set to zero so that,
when viewed, there are no lines separating each object.

To clearly demonstrate how the cells are assembled, the
cell thickness in the following diagram has been set to
one:

As shown in this diagram segment, the recursive
capabilities of nesting tables within tables makes it
possible to assemble these individual table cells onto
itself. The HTML tables also resize themselves when the
browser is stretched. The flow diagram is visually
descriptive especially when borders of the table cells are

invisible.

Each GIF image contains an image map. This allows
users to click on parts of the image while linking to the
proper drill down. The image maps are also dynamically
created inside the SCL program through a submit block.
The variables are resolved during execution as shown with
a preceding ampersand (&) in the following example:

submit;
<!-- &curprog -->
<div align="center"><center>
<table>
 <tr>
 <td align="center">
 <MAP NAME="cr_&curprog">
 <AREA SHAPE="RECT"
 COORDS="28, 11, 45, 28"
 href="l_&curprog.html"
 target="_blank">
 <AREA SHAPE="RECT"
 COORDS="0, 12, 16, 28"
 href="c_&curprog.html"
 target="_blank">
 </MAP>

 <img src="&webhost/recurse.gif"
 alt="Recursive SAS Program:
 &curprog.sas"
 border="0"
 usemap="#cr_&curprog">

 <a href="c_&curprog.html"
 target="_blank">

&curprog

 </td>
 </tr>
</table>
</center></div>
endsubmit;

Since there are so many objects to manage in this diagram,
it is worth the effort to systematically generate the code
for these image maps.

Conclusion
A large part of managing a data warehouse is
understanding how data is changed during its many
transformations. The ability to capture and document the
flow of the data transformation and its metadata changes
are key insights. e-DOC is a tool used to help in
documenting this process with a graphical representation
to truly show the flow of the transformations. At
Genentech, Inc., clinical trial data is merged and
transformed to produce report-ready files which support
clinical trial reports used for FDA submissions.
Documenting this process is a necessity in keeping with
FDA requirements. HTML proves to be versatile yet easy
for the generation of this documentation, making it more
accessible and easier to navigate in a standard file format.
Also the documentation provided through the HTML
pages can be converted to PDF to provide supplemental
documentation to the electronic final reports.

For the Genentech, Inc. Electronic Reporting pilot project,
the e-DOC components tracked the transformations of
clinical trial data and the production of SAS output during

the development stages of the project. At the final report
publishing stage, the e-DOC tools, which facilitate the
programming and data warehousing activities, were also
implemented to help integrate the report components. The
advantages are a single process and technology to meet
the needs of different users. The result is a process which
merges the generation of the clinical data warehouse and
the production of the clinical trial report document.

ACKNOWLEGEMENTS
We wish to thank the “e-team” at Genentech, Inc. including:
Dave Christiansen, Amy Kuettner, Guy Pawson, Dave Sundin
and Tri Tu for their ideas and contributions to this project.

SAS is a registered trademark or trademark of SAS Institute Inc.
in the USA and other countries.

® indicates USA registration.

Authors:
Sy Truong
Meta-Xceed, Inc.
sy.truong@meta-x.com

Kathy Boussina
Genentech, Inc.
boussina@gene.com

	Main TOC
	Section Contents

