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SAS System and SAS Program Validation Techniques 
Sy Truong, Meta-Xceed, Inc., San Jose, CA 

 

ABSTRACT 
This course will teach methodologies of performing SAS system and SAS program validation including new 
installations and updating to a new version of SAS on a production server including SAS macros and programs.  
Some of the topics covered include: backward compatibility, SAS systems versus multi-use SAS macros, project 
specific and stand alone SAS programs and standard programs for portability.  Validation of a SAS system most 
commonly occurs during an upgrade from an older version of SAS or moving to a new platform. The examples used 
in this course include migrating to SAS 9.2 and moving from a legacy operating system to the windows platform. In 
either case, similar validation challenges are confronted. It is recommended that you first acquire a global view of the 
system and identify the architecture. Only after gaining this perspective would it be useful to then focus in on 
individual components. This allows you to obtain the scope and interconnectedness of each component so that your 
validation efforts are balanced and thorough. Once the system architecture is clearly understood, the requirements 
and functional specifications of each component are documented accordingly. These functional specifications then 
drive the validation testing.    

INTRODUCTION 
Validating a new version of SAS on a production server or a series of standard macros can be daunting task. The 
SAS System ships with user friendly installation qualification tools can assist in this process.  This tool coupled with 
other tools and a well defined process makes it a little easier.  Besides qualifying the installation and implementation, 
there are other tasks and components of the system that need to be validated or verified.  Some of these components 
include: 
 

1. Backward compatibility issues with older versions of datasets and format catalogs. 
2. Validating multi use macros and standardized code templates. 
3. Verifying stand alone or project specific programming and output. 
4. Effects on Standard Operating Procedures (SOP) and programming practices. 

  
The interconnectedness of the SAS computing 
environment does require considerable efforts in 
validating any addition or changes to the current 
environment.  If the validation is executed successfully 
however, it can ensure that the new system has greater 
traceability between output, programs and source data.  
The performance qualification also sheds light on ways 
of optimizing the work and dataflow of your entire 
computing environment.  The many benefits of 
performing validation of the SAS System will outweigh 
the effort and associated costs.  In addition, validated 
systems are required within a regulated environment so 
it beneficial internally and when interfacing with an 
external collaborators or regulatory agencies. 
 
 

It is important to follow validation steps in a systematic and orderly fashion since they are interdependent.  
Documentation of each step for instance, in the validation process is also essential in capturing and proving that the 
validation effort was done properly.  Along with detail documentation, the capture the traceability of each validation 
task is essential for the reviewer.  For each test case that is performed, there is an associated functional specification 
which then is connected to the requirements for a particular component of the system as a whole.   The map or 
traceability matrix that ties all these validation components together is pivotal to an auditor.  Proper documentation will 
therefore make the difference between a successful validation audit and a complete failure.   
 
One of the main goals of the validation effort is to ensure that the installation and implementation of the SAS system 
and tools function as intended by the vendor (SAS Institute) or the author of the macro and your organization.  The 
validation will ensure this success of this process.  An example work flow for a validation process is shown below in 
this diagram. 



2 

 

 

ARCHITECHING COMPONENTS 
The first step in your validation effort is to understand what it is that you are working with.  The SAS System, as 
delivered to you in a series of CDs, is a system which contains modules such as Base, Stat, Graph and other 
components of SAS.  This however only makes up part of the system that you are implementing in your organization.  
The SAS software fits into a computing environment that interacts with other software and hardware.  If you were to 
take into account all the associated hardware and software that SAS interacts with, this is what is considered the 
“SAS System” from a validation perspective.  It is therefore important for you to take the right steps to identifying and 
documenting all these components. 
 

STEP 1 – HARDWEARE COMPUTING ENVIRONMENT 
Identify all the hardware components of your computing environment.  For example: 
 

Hardware Component Name 

SAS Application Server SASAPPSRV 

SAS File Server SASFILESRV 

Client Desktops CLIENTDSK 

 
There could be many physical machines used or just a few.  It is important to know where SAS is stored and which 
machine stores other files that relate to SAS. 

  
STEP 2 – SECURITY ACCESS 
Document security model implemented for your SAS environment.   

 

Server Type Security Levels 

SAS Application Server Windows Login 

SAS File Server Windows Login 

 
There could be a software layer or physical layer to your security model. 
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Internet

VPN

MXI LAN

Windows OS Security

SAS 8.2 Application

SAS Data

SAS Programs

SAS Output

SAS Data Security

 
 
It is common to have a combination of software and hardware contributing to your security model.  By documenting it, 
you will see where there are holes or areas that may need improvements. 

 

STEP 3 – SOFTWARE COMPONENTS 
Identify all the software components that are installed on your hardware.   

SAS Application Server 

- SAS 9.1.3 Enterprise Bundle 

- Microsoft Windows XP  

- SAS System Viewer 

- SyValidate version 3.0  

   

This step is essential in understanding all the software used on your system.  This step helps you perform the impact 
analysis of how SAS affects other components within your environment. 
  

STEP 4 – SYSTEM ARCHITECTURE 
Document the system architecture.  This ties all the hardware and software together. 
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This gives you a bird’s eye view of all your components and how they relate to each other.  Only include those 
components that relate to the SAS system.   This includes input to the SAS system such as source data bases and 
output reports or data that is produced by SAS.  The above examples steps through the formal process of the SAS 
system which is rather complex and has potential for high risk.  From a validation’s perspective, a SAS macro or 
series of SAS program is less risk and would requires a abbreviated series of steps as compared to the formal 
described. 

SYSTEM REQUIREMENTS 
It is important to obtain all this software but you have to know what you want to do with it before it can be useful.  If 
you are the end user, then you would pose the question to yourself.   

   What do I need SAS for to help me do my job? 

See if you can answer this question with one concise sentence.  This short answer will be the theme that you will use 
in capturing your requirements.  If you are not the end user, then set up interviews with the end users and ask them 
the same questions.  During this requirement collection stage, distinguish between what the user is requiring and 
what the software vendor (SAS Institute) is requiring.  For example, the system must run on Windows XP Professional 
rather than Windows XP Home.  This may be something that would be nice for the users, but it is more of a vendor 
requirement.  This distinction will help you better organize your requirements. 

STEP 1 – VENDORS’ REQUIREMENTS 
Identify all the vendor’s (SAS Institute) minimum requirements.  This has to do with the minimum memory or hard disk 
requirements for your particular hardware and operating system configuration.  This can be different between your 
SAS server versus data and client machines. 

STEP 2 – INTERNAL ORGANIZATION REQUIREMENTS 
Document your organization’s requirements pertaining to security and computing environments.  Your organization 
may have backup facilities or there are password and data access stipulations.  These requirements are usually 
established by your organization and can be different from the vendor’s requirements or the specific user’s 
requirements. 

STEP 3 – USER REQUIREMENTS 
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Document the users’ wishes and requirements.  An example would be that SAS generate reports and perform 
specified statistical analysis.  Some user requirements may relate to step 1 and step 2.  For example, the user may 
want the system to be fast and available 24x7.  Sometimes the requirements do crossover.  It is not essential that you 
capture every little requirement but that the most important and essential features are captured. 

The requirement steps can be laborious and not very exciting.  However, it will give you great insight in to what are 
the core business needs of your organization as it relates to the use of SAS.  This understanding is essential in 
focusing your validation efforts to ensure the highest degree of your system’s effectiveness and integrity. 

FUNCTIONAL SPECIFICATIONS 
Now that you know what it is that you need SAS to do, the next step is to understand how that is accomplished.  For 
example, if one of your requirements is for SAS to generate reports in PDF format, the functional specification 
corresponding to this requirement would detail the use of PROC REPORT and associated ODS options to produce 
the required report.  The SAS System is very extensive and delivers most of user’s requirements.  However, there are 
instances where users have requirements that go beyond what is available from SAS.  Here are a couple of sample 
requirements that may not be delivered by Base SAS. 

1. SAS Program Change Control – SAS programs that are edited and updated need to be versioned to form 
a complete audit trail. 

2. Report Table of Contents – All SAS listings and table output need to be documented and organized in a 
table of contents. 

In this example, the functional specification will detail the use of tools supplied by external vendors such as MXI’s 
SyValidate and Trialex tools.  In this example, the corresponding functional specification would be: 

1. SyValidate is used to make a backup copy of each SAS program each time it was submitted.  This includes 
recording the user name and time in which it was captured.  Optionally, the tool will capture a user note 
explaining the changes.  Any SAS program can be rolled back to an older version.  Reports can also be 
generated to detail a complete audit trail for a comprehensive change control of SAS programs 

2. The Trialex tool is used to organize all report titles and associated footnotes in a central database.  A table 
of contents can be automatically generated in RTF, HTML and PDF format including hyperlinks to each 
specified report. 

Your group may have a macro or other utilities that are analogous to these tools.  In this example, the functional 
specification provides a little more detail on how a particular requirement is accomplished.  If you are the end user, 
the documentation of the functional specification will answer the question whether the requirement is met.  If you are 
not the end user, you would need to present the functional specification to the user and ensure that it fulfils the 
original requested requirements before proceeding to the next step. 

TEST PLAN PROTOCOL 
The last major step in your validation process is creating the test plan and executing the tests.  This will confirm that 
each functional specification that you have identified truly does work.  There are many formats in which you can 
organize your test plan.  The following are suggested steps that need to be documented. 

STEP 1 – VALIDATION ROLES 
Identify the role and who will be responsible for performing testing related tasks.     
  

Qualification and Testing Activity Responsibility Assignment 

Protocol Generation Validation Specialist or Contractor 

Protocol Approval 

System Owner 

Validation 

Quality Assurance  

Protocol Execution 
System Owner or Contractor or 

System Administrator 

Protocol Execution Review Validation  
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Qualification and Testing Activity Responsibility Assignment 

Validation Protocol Deviation 
Review and Approval 

Validation 

Quality Assurance  

Qualification Final Report 
Generation Validation Specialist or Contractor 

Qualification Final Report Approval 

System Owner  

Validation 

Quality Assurance  

 

It is not required that specific names be detailed at this stage, but rather the job title or description will suffice.  This is 
more flexible in that the same person can do more than one job or there may be reassignments once the testing 
starts. 

STEP 2 – IMPLEMENTATION PLAN 
This step involves documenting the implementation plan.  This is where you specify the category of tasks that need to 
be performed in order for the testing to be completed successfully.  An example of some of the steps includes: 

1. Validation Objective - The objective of this qualification effort is to qualify the installation and functionality of 
the SAS system. 

2. Activities 

a. Installation Qualification Testing 

i. Verification of the hardware and software components 

ii. Verification that the servers are properly secured 

b. Performance Qualification Test 

i. Verification procedures are put in place for the operation of the system\ 

ii. Backup and recovery procedures are verified 

c. Acceptance Criteria 

i. Demonstrate and document that system requirements have been satisfied 

ii. The system is installed according to the approved qualification protocols 

3. Change Control 

a. Version management and configuration management 

b. Revalidation procedures and associated triggers  for revalidation 

  
These are just highlighted areas that are to be considered a complete list.  There is no exact one template that will 
work for all conditions but these steps are a good start as suggested guidelines. 
  

STEP 3 – TESTING TYPES 
This step involves defining the types of testing that need to be done. There are several different types of qualification 
testing.  You would need to perform all of these to be thorough. 

1. Installation Qualification (IQ) – This ensures that the installation of SAS and related tools was done 
according to the vendor’s expectation.  It usually verifies if all the files and components have been installed 
and are operational. 

2. Operational Qualification (OQ) – This ensures that the system is operating with all of the intended 
features.  This includes all the functions detailed in the functional specifications. 
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3. Performance Qualification (PQ) – This ensures that the system performs within the size data and amount 
of users that would be used in the real world.  This will simulate real use to see if the system performs 
according to expectations. 
  

STEP 4 – TESTING PROCEDURES 
Testing flow charts can really clarify how testing is to be conducted.  This documents the order of the testing steps 
and how the test is to be handled in the event of deviations. 
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NO
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Protocol
Deviation

Specification
Change Required?

Approve/Not
Approve

Validation Report
and Cumulative

Changes

YES

NO

Change
Required?

YES

NO

All Testing
Performed?

YES
NO

"Red-line"
typographical

errors

Execution
Deviation

Approved Validation
Protocol

IS Change Control

 
Use diagrams wherever possible to visually clarify how testing is to be conducted.  This is more useful than long list of 
text procedures. 

SAS PROGRAMS 
The SAS system is comprised of many components that are delivered from SAS Institute.  Programs or SAS macros 
that users develop are also an important component.  Validating SAS programs presents some unique challenges 
especially when working within a regulated environment such as the pharmaceutical industry.  SAS programmers in 
your team that develop these programs come from many different backgrounds that can range from biology to 
statistics. The majority are not from a computer science background. This is normally due to the fact that SAS 
programmers have expertise in the domain of the data in which they are analyzing.  This is helpful for ensuring the 
outcome of the analyses but creates challenges by creating an unstructured programming environment. The work 
flow is driven by reports and therefore is usually done in an ad hoc manner.  The analysts normally get mockups of 
the report which describe what they need to produce.  SAS programmers often jump right into programming with little 
or no programming design considerations. SAS has adapted to this work flow as compared to other more structured 
high level languages.  Other languages such as C or Java are stronger typed. This means that the variables and data 
tables have to be defined with proper variable type and length before they can be used.  On the other hand, SAS 
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programs can dynamically create variables as you go along, lending itself to the ad hoc nature of the development 
process.  This can be beneficial for creating exploratory analysis and conducting experiments with the data.  
However, it fosters software development that is riddled with maintenance challenges.   

The tools used to develop SAS programs, such as display managers or text editors, are further examples of the ad 
hoc nature. Display manager gives some structure, but it is designed for exploration. Software development tools for 
other languages allow for the programmer to manage the source code as it relates to other programs and data.  On 
the other hand, SAS programs are ASCII text files that any user can edit with a text editor of their choice. In a similar 
way, display manager stores programs on disk as files and does not create any other structure upon that.  
 

 

 
VALIDATING PROGRAMS 
Similar to validating the SAS System itself, SAS programs needs an organized methodology and approach for 
validation.  One of the first steps in validating programs is to have a test plan.  The test plan is derived from a list of 
functional specifications. The functional specifications are, in turn, driven by the list of requirements. This is an 
interrelated set of documents that drive the process. 
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The level of detail of documentation depends on the complexity of the set of programs or macros being validated.  
The following levels distinguish the differing types of SAS programs. 

- Exploratory - These are random sets of programs developed by analysts and statisticians to test out a 
hypothesis.  They are not included in the final analysis or part of a submission. 

- Stand Alone - These are one of the programs developed to generate specific reports or analysis files.  They 
may be driver programs that call other macros but these driver programs are not used multiple times. 

- Multi-Use - These are usually macro code or standard code segments that are used multiple times in more than 
one analysis.  They can be stored at a global library where multiple users can access them. 

It may be worthwhile to track exploratory programs, but they are not usually included in formal validation documents.  
However, it is recommended that both stand alone and multi-use programs are included.  The multi-use programs 
deserve more detail and formal documentation, while the stand alone programs can be abbreviated to fit the 
complexity of the specific program. 

AUTOMATED VALIDATION TASKS 
One of the most common ways that a SAS programmer interacts with programs is submitting them.  This is a good 
time point to capture information pertaining to the SAS programs.  From Windows Explorer, a user submits a program 
by right mouse clicking on the program and selecting "Batch Submit". 
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Additional information can be automatically captured along with submitting In this step through the use of the 
SyValidate tool.  Among the information it captures include: 

1. Backup - Make a backup copy of the code stored in the current SAS program. 

2. User Name - Capture the current user name from the operating system. 

3. Date Time - Capture the date time at the moment of the transaction. 

4. Action - Identify what type of action is being performed.  This is usually a well defined task defined in the 
validation process.  Some examples include: version backup, locking for testing, validation testing, promoting 
to production. 

5. Status - A status associated with the SAS program to identify if the validation testing has failed or passed. 

After capturing and recording this information, the next step is to submit the program in the same way that the "Batch 
Submit" did before.  In this example, the process captures many of the required tasks for maintaining an audit trail of 
the program without any additional effort from the user. 

It is more realistic that only pivotal changes in the code would require a version backup.  For smaller edits to the 
program, users would still use the "Batch Submit" selection.  Once they decided that the code had changed 
significantly from the last time a version was captured, they would then choose the "V - Submit SAS + Version" menu 
item.  On some of these code changes, a note describing the change is required to add meaning to the audit trail.  In 
this case, another menu item "V - Version + Notes" is selected.   
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This step would capture all the information as the previous example including: backup program code, program name, 
user name, action, task, and date time.  In addition, a short note can be entered describing the current code or logic 
change.   

The features of creating a backup and capturing a descriptive note can be used during any type of SAS program 
development.  However, in order to integrate this into the validation process, we need a mechanism that would lock 
the program for performing validation testing. 

The process involves a verifier, who is a different person from the original author of the SAS program, to review the 
program and associated output and data.  The verification may even include developing another independent SAS 
program to come up with the same results as a way of verifying.  In this case, the verifying program can use the same 
versioning technique for a complete audit trail.  During verification, however, it makes sense to lock the original code 
since we do not want to be verifying a moving target.  When the user initiates the validation process by selecting the 
menu "V - Validation", a copy is made but it also changes the file extension which makes it clear that this is no longer 
a program to be edited. 

Upon completion of verification, the verifier can record findings by right mouse clicking on the locked program and 
selecting "V - Notes".   

 
 
This allows the verifier to record specifically which verification tasks were performed and if the testing was successful 
or not.  A status is recorded to determine what is to be done.  If it failed, then the original programmer has to fix the 
problem and the verifier goes through the loop again.  If it passes, it can be promoted directly to production.   At each 
step of the way, information is captured including a descriptive note which gives context to the task at hand. 

Upon promotion to production, the programmer can choose to assign a version number.  This can follow the decimal 
conventions such as version 1.0, 1.1, 1.2 etc…   
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If the verifier promoted a program directly from the verification process with the selection of "Verification Passed + 
Production", this will increment the version number by one integer value automatically.  By performing the promotion 
in a separate step, the user can increment the version number to a custom value. 

If during verification, problems were identified, the original programmer will need to unlock the program to perform the 
fix.  This is available through the menu item "V - Unlock".  SyValidate allows the user to record a note pertaining to 
the unlocking and then it renames the file back with the (.sas) file extension for further edits.  Throughout the process, 
all this information is centrally recorded and reports can then be generated to document the validation process.  
Rather than manually typing these reports, SyValidate generates these reports for you so that the process of 
validating SAS programs can be documented with much more detail and is a less time consuming and laborious 
process. 

CONCLUSION 
Validation is a significant aspect of any SAS program development process.  However, during the process of 
performing validation tasks, you may not appreciate what impact it is having.  It may seem dry and laborious.  In 
practice, however, you will find that when the test scripts are being created according to the test plan, you will 
discover issues pertaining to backward compatibility of SAS datasets and catalogs if you are upgrading.  You will also 
find subtle errors and, in some cases, major bugs within your commonly used multi use macros.  The performance 
qualification can also encompass the use of stand alone study specific code.  In many instances, this reveals 
discrepancies that can lead to improvements to your system.  The validation process can also solidify and help more 
clearly define the standard operating procedures and good programming practices of your group.   If you can step out 
of the thinking of having to perform validation grudgingly and see it from a larger perspective, it can have a profound 
effect on your entire organization in how you and your users interact with SAS and its related data to fulfill your 
business objectives. 
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