22 Becoming a SAS Clinical Trials Programmer
Chapter 2 Different Paths to Clinical Programming 21

[image: image1.png]

[image: image5.wmf]Internet

VPN

MXI LAN

Windows OS Security

SAS

8

.

2

Application

SAS Data

SAS Programs

SAS Output

SAS Data Security

[image: image14.wmf]Develop System

Requirements

Specification

Develop Validation

Test Protocol

Execute Validation

Test Script

Record Test

Results

Test Pass

?

Report Results

File Validation

Deviation

(

DV

)

YES

NO

Deviation Type

System Problem

Reporting Form

(

PRF

)

Program or

Configuration

Deviation

Validation Test

Protocol

Deviation

Specification

Change Required

?

Approve

/

Not

Approve

Validation Report

and Cumulative

Changes

YES

NO

Change

Required

?

YES

NO

All Testing

Performed

?

YES

NO

"

Red

-

line

"

typographical

errors

Execution

Deviation

Approved Validation

Protocol

IS Change Control

Chapter 9

Regulation and Regulatory Requirements
Validation History and Overview
History
Validation was introduced to the FDA in the mid 1970s but it is very much alive and relevant in today’s drug development environment. The recent recall of Merck’s Vioxx in September of 2004 after a study linked it to increase heart attack and stroke demonstrates the importance as to to why we need careful scrutiny from our regulatory review of the drug approval process in order to prevent such disasters. The need for validation is affirmed in the more recent event in July 2007 when the FDA concluded that GlaxoSmithKline’s type 2 diabetes drug Avandia increases heart attack risk. Ideally, the FDA would be proactive in deciding on regulations that would prevent dangerous drug recall after many deaths due to drugs that has been proven to be harmful. However, historically, the FDA has been reactive in proposing precautionary procedures such as validation. The early proposals for validation were in direct response to problems with sterility as it involves the production of parenteral products. Validation procedure then spread to other processes as it evolved to the guidelines in 1987 in "Establishing documented evidence that provides a high degree of assurance that a specific process will consistently produce a product meeting its pre-determined specifications and quality attributes.".
Although validation permeates all aspects of drug development ranging from manufacturing to computer systems, in the world of analytics and the use of SAS, computer system validation regulation has a direct impacts. The FDA published in 1983 the guide to for Computerised Systems in Pharmaceutical Processing. This developed into a rugulation 21 CFR Part 11 for rules on the use of electronic records, electronic signatures in 1997.

There are many provisions to the guidenlines but one of the core themes is defined as the “Confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled”. This means that for any software developed, it needs to be predeterimined from requirements in a consisted and expected manner. This structured approach is intended to have computer system function as intended from its design. In a validated system, you would define all the requirements and functional specifications first and then test and verify that the software function according to these requirements. In most cases this process works well with drug development but can pose many challenges in an environment of data exploration where the end result is not always predefined. The data explratory nature of SAS is very well suited for data analysis but often create challenges when working within the confines of a structured validated environment.
The SAS System is a comprehensive set of tools but it is only one component within a larger system used to perform data management, analysis and reporting of clinical trials data. Validation can only be effective if it is treated as a whole witin an entire process. Even if you are developing a single program that reads one table from a relational database and then generate one report that goes into an electronic sumission, your single program has a significant impact and therefore is interconnected to a larger system. There are different inherit risks associated with each program. The level of risks pertaining to your use of SAS has a direct correlation with the scope of your validation effort. It is therefore important to perform a risk assessment to determine the appropriate level of validation efforts applied to each component. All the components of your computer system will need to function according to to specifcation with a approriate level of valdiation for the whole system to fucntion consistently with integrity.
Challenges
Validation of the SAS System within a larger computing environment is similar to validating other computer systems. However, there are some specific characteristics of the SAS system within the clinical development environment which creates unique challenges.

The SAS system is comprised of many components that are delivered from SAS Institute. In addition, programs that users develop using the SAS software become additional components to the process. Validating SAS programs presents some unique challenges especially when working within a regulated environment such as the pharmaceutical industry. SAS programmers in your team come from many different backgrounds that can range from biology to statistics. The majority are not from a computer science background. This is normally due to the fact that SAS programmers have expertise in the domain of the data in which they are analyzing. This is helpful for ensuring the interpretation of the outcome from analyses reflect the correct intended meaning, but it also creates an unstructured programming environment. The work flow is driven by reports that are done in an ad hoc manner. The programmer analysts usually get mockups of reports which describe the end result. They often jump right into SAS programming with little or no data and programming design considerations. SAS has adapted to this work flow in contrast with other more structured high level languages. Other languages such as C or Java are stronger typed. This means that the variables and data tables have to be defined with proper variable type and length before they can be used. On the other hand, SAS programs are create with variables defined dynamically as you go along, lending itself to the ad hoc nature of the exploratory analysis process. This can be beneficial for creating quick analysis and conducting experiments with the data. However, it fosters software development that is riddled with maintenance challenges and becomes a validation nightmare.
The tools used to develop SAS programs, such as display manager or text editors, are further examples of the ad hoc nature of SAS programming. Display manager gives some structure, but it is designed for data exploration. Software development tools for other languages allow for the programmer to manage the source code as it relates to other programs and data in organized units such as projects. However, SAS programs are plain text files that any user can edit with any text editor of their choice. In a similar way, display manager leaves the programs stored on disk as text files and do not enforce any other structure upon these files.
 [image: image2.png]£ Vo Tk R 5o A)
v o Esdlirec paiXx0e

Log - (Untitled)
OTE: The SAS System stopped processing this step because of errors.]
ARNING: The data set WORK.MAX nay be incomplete. Hhen this step was stopped there were
observat ions and 0 variables.
(OTE: PROCEDURE MEANS used :
real tine 6.6 seconds
Gpu tine 0.12 seconds

Contents of ‘545 Enviorment.

Libraries

S DATA ALLPOS; SET;
DO SEGNUM=1"T0 MAX;
ouTPUT;
END;
KEEP SEGNUM;

/% DETERMINE IF THERE ARE ANY SEGMENT NUMBERS THAT HAVE BEEN
SKIPPED OR ARE NON-INTEGER, AND PRINT THESE OUT. */

: Variable MAX is uninitialized.
There were 0 observations read from the data set WORK.MAX.
The data set WORK.ALLPOS has 0 observations and 1 variables.
: DATA statement used:

1 chekanom.sas

R O]
/* S4S SANPLE LIBRARY o
’* K/
A + CHERANOM "
A : Digitizing Map Data Sets - Line Segment Directory °/
/* GRAPH o
’* : ALL "
’x mapping o
’* : MEANS SORTT PRINT "

B Output - {Untitled) |] Log - (Untitled) | [chekanom.sas

NOTF: 72 e Sttt [Mow et sl sefngey T 1, Al 1

Similar to validating the SAS System itself, SAS programs need an organized methodology and approach for validation. One of the first steps in validating SAS programs is to have a test plan. The test plan is derived from a list of functional specifications. The functional specifications are, in turn, driven by the list of requirements. This is an interrelated set of documents that drive the process.
The level of detail of documentation for validation depends on the complexity of the set of programs being validated. The following levels distinguish the types of SAS programs.

· Exploratory - These are random sets of programs developed by programmers and statisticians to test out a hypothesis. They are not included in the final analysis or part of a submission.
· Stand Alone - These programs are developed to generate specific reports or analysis files. They may be driver programs that call other macros, but these driver programs are not used multiple times.
· Multi-Use - These are usually macro code or standard code segments that are used multiple times in more than one analysis. They can be stored in a global library where multiple users can access them.

[image: image3.png]Validation Documents Flow

Requirement
Specification

Program Header
&
Comments

Functional
Specification

Debugging
Programs

It may be worthwhile to track exploratory programs, but they are not usually included in formal documents. However, it is recommended that both stand alone and multi-use programs are included in the formal validation process. The multi-use programs deserve more detail and formal documentation, while the stand alone programs can be abbreviated to fit the complexity of the specific program.

Risk Assessment
Validation can be a bureaucratic process that is very time consuming. To fully gain the benefits from the validation efforts, the tasks performed needs to be executed in a well organized and efficient manner. One of the key initial steps to set you in the right direction for your validation effort is to perform a risk assessment. This process will identify what type of software you are about to validate and evaluate if and how it will impact the critical path of your electronic submission. The risk assessment can be applied to evaluating a range of software including the large SAS systems in a complex client server component while also assessing a simple stand alone SAS program on a user’s desktop. The impact on these SAS tools can vary and therefore will require different levels of validation.

The following prescribed steps can be used to perform the risk assessment and therefore determine to the level of formality and efforts placed on your validation process.

STEP 1: Identify Software System
You should describe the system that you are about to validate with a name. This can include both a short name and a longer description. For example it can be:

SAS 9.1.3 – Updating SAS 8.2 to SAS 9.1.3 on Main Application Server

or

AESUM – Adverse Event Summary by Severity Macro

In this case, the short name is a brief unique identifier which is followed by a more descriptive text describing the SAS software in which you are going to validate.

STEP 2: Document Location
The software system can be a single program or a more sophisticated multi-tiered system spanning multiple servers. In either case, it is important to identify the server name and path location to where it is stored.

STEP 3: Classify Functional Type
There are many ways to classify the software, but from a validation perspective, it is classified by function. It is common to have software which contains many functions and in that case, the list of classification can include a long list of functional categories. Some example of category for SAS programs can include:

· Generate Analysis Files

· Produce Data Listings

· Generate Summary Tables

· Generate Graphs

· Perform Edit Checks

STEP 4: Usage Analysis
The software can be used in many different ways. To perform a risk analysis, you would have to understand how often it is used. In the clinical environment, you also need to know if its use will span protocols or studies. This can also identify how many people and types of users affected. Some example usage assessment can include:

· Single Use Program in One Study

· Multi Use Program in One Study

· Multi Use Utility or Macro in Multiple Studies

· Multi Use Utility or Macro in All Studies

STEP 5: Error Evaluation
Each software component has different degrees as to how error prone it is. This may be difficult to evaluate but one form of evaluation is that if a tool has been used for along time; it is less likely to be error prone as compared to a new beta version. A very complex system with many parameters and connections to other systems is more likely to contain errors compared to a simple stand along utility.

STEP 6: Scoring
The risk assessment in steps 3 through 5 require you to perform analysis and to then apply metrics to determine the level of risk. You can make this assessment by placing a score or a number associated with each category. The actual numerical grade can vary upon each organization but once established, it can be used repeatedly to measure the relative risk for each software system.

This risk assessment can be summarize in a one or two page document documenting all the components that goes into deriving the ultimate total score as noted in step 6. The final risk assessment score can then be translated into a risk evaluation grade of either: low, medium or high. The three level of risk grade ranking is sufficient to drive the level of validation that you will be used in matching the software with the appropriate level of validation. The time it takes to evaluate and document the risk can significantly save the amount of effort in your entire validation process. It is therefore prudent and smart to perform this risk assessment before doing any validation.
[image: image6.wmf]T

e

r

m

i

n

a

l

S

e

r

v

i

c

e

s

SAS System

Architecture

Network

Switch

(

es

)

Backup Tape Library

Tape drive

SAS

8

.

2

Client Workstations

(

Raid

5

configuration

)

W

2

K

SAS

8

.

2

Application

SAS Data

SAS Programs

SAS Output

Veritas Agent

Internet

Network Firewall

Remote Access

Laptop computer

VPN Client

Router

VPN key

MXI Fremont LAN

SAS Application

and File Server

SAS

8

.

2

Application

Terminal Server Client

Database Server

Solaris Operating System

Veritas Client

RAID Level

1

Database Application

Studies Databases

Internet

External CRO Data Sources

Coding Dictionaries

Zip files

Email Attachments

External CRO Data

In CD format

Intranet

SQL Server

File Server

Web Server

Approach to SAS System Validation
Once the risk assessment has been applied, you have a sense of the level of validation that you would need to perform for the specified SAS system. There can be different scenarios for performing a validation. Validation of a SAS system most commonly occurs during an upgrade from an older version of SAS or moving to a new platform or OS upgrade. The examples used in this chapter include migrating from SAS 8.2 to SAS 9.1.3 and moving from a legacy operating system to the windows platform. In either case, similar validation challenges are confronted. It is recommended that you first acquire a global view of the system and identify the architecture. Only after gaining this perspective would it be useful to then zoom in on individual components. This allows you to access the scope and interconnectedness of each component so that your validation efforts are balanced and thorough. Once the architecture is clearly understood, the requirements and functional specifications of each component can be more efficiently documented. The functional specifications then drive the validation testing.
It is important to follow these steps in a systematic and orderly fashion since each component is interdependent. Documentation of each step in the validation process is also essential in capturing and proving that the validation effort was done properly. Besides documenting each step, it is also important to capture the traceability of each validation task. For each test case that is performed, there is an associated functional specification. The functional specification then is connected to the requirements for each component of the system as a whole. The map or traceability matrix acts as an index which clearly links all these validation components together. It is therefore a very useful tool for the auditor during a review. Proper documentation will make the difference between a successful validation audit and a rejection of the submission.

The main goal of the validation effort is to ensure that the installation and implementation of the SAS system and its associated tools function as intended by the vendor (SAS Institute) and your organization. In addition to this goal, the documentation of your validation effort will also ensure the integrity of your computing environment and therefore is compliant with regulatory requirements such as the CFR Part 11.

Architecting Components
The first step in your validation effort is to understand what it is that you are working with. The SAS System, as delivered to you in a series of CDs, is a system which contains modules such as Base, Stat, Graph and other components. This however only makes up part of the system that you are implementing in your organization. The SAS software fits into a computing environment that interacts with other software and hardware. If you were to take into account all the associated hardware and software that SAS interacts with, this will form the entire “SAS System”. It is therefore important for you to take the right steps in identifying and documenting all these components.
STEP 1: Hardware Components
Identify all the hardware components of your computing environment. For example:
	Hardware Component
	Name

	SAS Application Server
	SASAPPSRV

	SAS File Server
	SASFILESRV

	Client Desktops
	CLIENTDSK

There could be many physical machines used or just a few. It is important to know where SAS is stored and which machine stores files that relate to SAS.

STEP 2: Security
Document security environment in which the SAS software operates within. The following illustrates the use of the operating system to authenticate users to two separate SAS servers.
	Server Type
	Security Levels

	SAS Application Server
	Windows Login

	SAS File Server
	Windows Login

There could be a software layer or physical hardware layer to your security model. These layers can be placed on top of each other to form tighter security. The following diagram illustrates how the programs and data are well protected from outside users since there are many layers of security put into place.
[image: image7.wmf]Develop System

Requirements

Specification

Develop Validation

Test Protocol

Execute Validation

Test Script

Record Test

Results

Test Pass

?

Report Results

File Validation

Deviation

(

DV

)

YES

NO

Deviation Type

System Problem

Reporting Form

(

PRF

)

Program or

Configuration

Deviation

Validation Test

Protocol

Deviation

Specification

Change Required

?

Approve

/

Not

Approve

Validation Report

and Cumulative

Changes

YES

NO

Change

Required

?

YES

NO

All Testing

Performed

?

YES

NO

"

Red

-

line

"

typographical

errors

Execution

Deviation

Approved Validation

Protocol

IS Change Control

It is common to have a combination of software and hardware forming your complete security model. By documenting it, you will see where there are holes or areas of weakness that may need improvements.

STEP 3: Software Components
Identify all the software components that are installed on your hardware is essential to gaining a clear picture of what needs to be validated. The following examples shows both SAS and other related software.
SAS Application Server
· SAS 9.1.3 Enterprise Bundle

· Microsoft Windows XP

· SAS System Viewer

· CDISC Builder Version 2.0

· SyValidate version 3.0

This step provides a clear picture of all the software used on your system that relates to SAS. The analysis on how SAS is affected by other components within your environment becomes more obvious once this diagram has been documented.

STEP 4: System Architecture
Document the system architecture. This ties all the hardware and software together.

[image: image8.jpg]Validation Documents Flow

Requirement
Specification

Program Header
&
Comments

Functional
Specification

Test Plan

Debugging
Programs

Test Scr'ipts

This sinle diagram gives you a bird’s eye view of all your components and how they relate to each other. In this case, only include those components that relate to the SAS system. The diagram includes inputs and output to the SAS system such as source data bases, output reports or data that is produced by SAS.

System Requirements
All the technology that is available only becomes useful once you know what you want to do with it. The best way to identify what is required to make the technology useful is to gain a perspective from an the end user. Put yourself in the shoes of the enduser if you are not playing that role and pose the question.

 What do I need SAS for to help me do my job?

See if you can answer this question with one concise sentence. This short answer will be the theme that you will use in capturing your requirements. If you are not the end user and find it difficult to access what is needed, set up interviews with the end users and ask them the same question. During this requirement collection stage, distinguish between what the user is requiring and what the software vendor (SAS Institute) is requiring. For example, the system must run on Windows XP Professional rather than Windows XP Home. This may be something that the end user does not need to know, but it is can be a requirement to manage group security from a vendor’s perspective. This distinction between the software vendor’s needs and the actual end user will help you better organize your requirements.
Follow the recommended steps below to effectively capture all your requirements.
STEP 1: Vendor’s Requirements
Identify all the vendor’s (SAS Institute) minimum requirements. This has to do with the minimum memory or hard disk size requirements for your specific hardware and operating system configuration. This can be different between your SAS appplication server as compare to the file server or client machines.

STEP 2: Organizatioin Requirements
Document your organization’s requirements pertaining to security and computing environments. Your organization may have backup facilities or there are password and data access procedures and stipulations. These requirements are usually established by the IT group within your organization.

STEP 3: End Users Requirements
 Document the end users’ wishes and requirements. An example would be that the plan to use SAS to generate reports and perform specified statistical analysis. Some user requirements may relate to step 1 and step 2. For example, the user may want the system to be fast, handle large sets of data and is available 24x7. Sometimes the requirements do crossover but the end user’s requirements are usually most demanding and unique. It is not neccessary that you capture every little requirement but the most important and essential features needs to be captured.

The requirement steps can be laborious and not very exciting. However, it will give you tremendous insights in to what are the core business needs of your organization as it relates to the use of SAS. This understanding is essential and will drive how your validation will be applied to ensure the your system’s effectiveness and integrity.

Functional Specification
Now that you know what it is that you need SAS to do, the next step is to understand how that is accomplished. For example, if one of your requirements is for SAS to generate reports in PDF format, the functional specification corresponding to this requirement would detail the use of PROC REPORT and associated ODS options to produce the required report. In this case, the functional specification provides more detail on how a particular requirement is accomplished. If you are the end user, the documentation of the functional specification will answer the question whether the requirement is fulfilled. If you are not the end user, you would need to present the functional specification to the user and ensure that it meets all the wishes as specified in the requested requirements before proceeding to the next step.

Test Plan Protocol
The last major step in the validation process is creating the test plan and then to execute the tests according to the test plan. This will confirm that each functional specification that identified truly does work. There are many formats in which you can organize your test plan. The following are suggested steps that need to be documented.

step 1: Validation Roles
Identify the role and who will be responsible for performing testing related tasks.
	Qualification
and testing Activity
	Responsibility Assignment

	Protocol Generation
	Validation Specialist or Contractor

	Protocol Approval
	System Owner
Validation Specialist
 Quality Assurance

	Protocol Execution
	System Owner or Contractor
System Administrator

	Protocol Execution Review
	Validation Specialist

	Validation Protocol Deviation Review and Approval
	Validation Specialist
Quality Assurance

	Qualification Final Report Generation
	Validation Specialist or Contractor

	Qualification Final Report Approval
	System Owner

Validation Specialist
Quality Assurance

It is not required that specific names be placed on this document but rather the job title or functional description will suffice. This is more flexible in that the same person can do more than one job or there may be reassignments once the testing starts.

STEP 2: Implementation Plan
Document the implementation plan. This is where you specify the category of tasks that needs to be performed in order for the testing to be completed successfully. Some examples include:
1. Validation Objective - The objective of this qualification effort is to qualify the installation and functionality of the SAS system.
2. Activities
a. Installation Qualification Testing
i. Verification of the hardware and software components
ii. Verification that the servers are properly secured
b. Performance Qualification Test
i. Verification procedures are put in place for the operation of the system
ii. Backup and recovery procedures are verified
c. Acceptance Criteria
i. Demonstrate and document that system requirements have been satisfied
ii. The system is installed according to the approved qualification protocols
3. Change Control
a. Version management and configuration management
b. Revalidation procedures and associated triggers for revalidation

These are just highlighted areas that are to be considered. There is no exact template but these steps are a good start as suggested guidelines.

Step 3: Validation Types
Define the types of testing that need to be done. There are several different types of qualification testing. If you are performing a formal validation process, you would need all three types.

1. Installation Qualification (IQ) – This ensures that the installation of SAS and related software was installed according to the vendor’s expectation. It usually verifies if all the files and components have been installed and are operational.
2. Operational Qualification (OQ) – This ensures that the system is operating with all of the intended features. This includes all the functions detailed in the functional specifications.
3. Performance Qualification (PQ) – This ensures that the system performs with expected performance with the size data and amount of users that is reflective of the real world implementation. This will simulate real use to see if the system performs according to expectations.
Step 4: Testing Methods
The test flow chart can be used to clarify how testing is to be conducted. This documents the order of the testing steps and how the test is to be handled in the event of deviations.
[image: image9.png]Production

Path Civaldation\werkiisaspgm

Frogam sl sas sa7
Vesion: 23

Notes:

This is an examble of a validated program going to production.

Use diagrams wherever possible to help clarify how testing is to be conducted. This is more useful compared to a set of procedures that are listed in text format.

SAS Validation with IT Departments
The SAS System can have a significant impact on the critical path of your submission. Once you have performed your risk assessment, you it will provide you with clear evidence that a formal level of validation is required. This requires many steps including many documents that need to be prepared as noted from the above sections. Many of these steps and documents may have already been established by your IT department. This is because other systems such as the operational database or other large systems in your organization would need to go through the a similar validation process. It is therefore recommended that you communicate with the validation expert in the IT department to coordinate this effort. In the ideal situation, all of these procedures and documents have already been established and prepared as templates. In that case, you would just have to update it to reflect aspects that are specific to SAS. In reality however, most IT professionals are not as familiar with SAS as compared to other enterprise software solutions. If there are established documents, it is likely that members from the IT department are not familiar enough with SAS to establish validation procedures without assistance from members from the biostatistics or statistical programmer’s group. Although there may be lack of expertise, it is essential that the IT departments are involved since they would be responsible for the maintenance and revalidation when there are updates. The SAS system is a large validation effort but SAS programs developed from the system also needs validation. In the case of SAS programs, the end users are even more involved since the IT department will have even less knowledge as compared to the SAS System. The next section will describe to you how you would most effectively validate SAS programs.
SAS Program Validation
The SAS system is comprised of many components that are delivered from SAS Institute. Programs that users develop are also an important component. Similar to validating the SAS System itself, SAS programs needs an organized methodology and approach for validation. One of the first steps in validating programs is to have a test plan. The test plan will function as a road map that would guide the entire validation process. The test cases documented in the test plan is derived from a list of functional specifications. The functional specifications are, in turn, driven by the list of requirements. This is an interrelated set of documents.

[image: image10.png]Validation Notes
Path Civaldation\werkiisaspgm

Frogam wussTl sas.sa7

Tasks
585 Progiom Header

545 Variable Names

(Appropiste Keep and Diop of Vaiables
Derived Varables

545 Dataset Nares Claiy and Uriqueness
545 Dataset Labels

Nainvalee

s Pmen 5]

Notes:

Here are some notes duing valdalion tesing

The level of detail of documentation depends on the complexity of the set of programs being validated. The following levels distinguish the distinct types of SAS programs.

Exploratory - These are sets of programs developed by analysts and statisticians to test out a hypothesis. They are not included in the final analysis or part of a submission.

Stand Alone - These programs are developed to generate specific reports or analysis files. They may be driver programs that call other macros but these driver programs are not used multiple times.

Multi-Use - These are usually macro code or standard code segments that are used multiple times in more than one analysis. They can be stored at a global library where multiple users can access them.

It is worthwhile to manage and track exploratory programs, but they are not usually included in formal validation documents. Exploratory programs do not have a direct affect on the final analysis and can be validated by performing an informal review. On the other hand, both stand alone and multi-use programs generate output that are included in a submission. The multi-use programs deserve more detail and formal documentation, while the stand alone programs can be abbreviated to fit the complexity of the specific program. The three types of validation which are used to handle the different types of SAS programs include:
1. Review and Change Control – Review of programs logs and associated output with tracking change control
2. Abbreviated Validation – Shorten validation procedures matching the program requirements
3. Detailed Validation – Complete set of functional specification with associated test cases to ensure integrity of the program and output

The three distinct validation categories build upon themselves. That is, the review and change control step are included in the abbreviated validation category. The steps taken in the first two categories are in turn included in the detailed validation.

Review and Change Control
The SAS program contain the intellectual property or business logic that will affect change to your data and output. It is therefore crucial that you have a complete understanding of how these programs are being updated before any validation efforts can be applied. The dynamic nature of the data and updates to the programs creates a moving target that can be difficult to pin down. To test and validate within this environment can therefore be that much more challenging. The management efforts of these updates are also referred to as change control.
The foundation of any validation effort is to gain a complete control over the the changes that is occurring to your programs. If this were not be established, the testing of the validation will be applied on a moving target. This would lead to many iterations of retesting that is both inefficient but would go against intended test plans. It is therefore essential that change control be put in placed and established as a prerequisite for validation. Once the change control mechanism is put in place, it will also function as a mechanism of documenting aspects of your testing during the validation process.

One of the most common ways that a SAS programmer interacts with programs is submitting them to be process by the SAS engine. This occurs often during development but is also in production mode due to the dynamic nature of the input data. The moment right before or after a SAS program is submitted is therefore a good time to capture information pertaining to the SAS programs for the management of change control. The types of information that needs to be captured at this moment include:

· Program Code - Make a copy of the current version of the SAS program

· User Name - Capture the user name of the person interacting with the program

· Date Time - Capture the date time at the moment of the transaction

· Action - Identify what type of action is being performed. This is defined as part of the validation process. Some examples include: version backup, locking for testing, validation testing, promoting to production.
· Status - A status associated with the SAS program to identify if the validation testing has failed or passed.

If this were to be done manually, a spreadsheet can be established and the programmer would then have to enter this information each time making it a resource intensive chore. There are many software tools out there developed to manage the version control of source program also referred to as VCS or source code management SCM. There are many tools developed for this purpose but they are designed for the general purpose of managing C or Java code. In the larger software development community, SAS represents a much smaller segment and therefore the majority of the tools are not catered to SAS, especially the specific needs of the pharmaceutical industry. These VCS tools therefore capture some of the information needed such as program code and date time, but specific validation tasks such as the action or status information is not captured. The method in which VCS captures this information is through the following mechanism.

1. Check out – A check out or (co) is performed by making a copy of the program and having a local version available for the user checking this out.
2. Update – An update is applied to synchronize all other programs from a larger set of programs to the working copy.

3. Check in – Once the programmer has completed changes, it is committed back to the central repository so the local version is updated toe the repository.

This is a well established set of procedures used in many development environments. However, the extra steps required to perform the check in and checkout is a hinderence in an an exploratory dynamic nature of SAS programs. If you were to invest the time in performing the steps of checking your SAS program into a VCS, you would gain the benefits of having change control but it still lacks the additional metadata needed to be collected during the validation process.

Another solution that is available, SyValidate is designed specifically to meet these needs. This system is intergrated the workflow of a SAS programmer so the user does not have to perform the extra step of checking in and out. If the user is in the Windows operating system, the step of capturing the change is performed when the user right mouse click to batch submit the program. The same function can be performed from a web browser if the server is no a UNIX or different operating system.
Once the SyValidate is invoked to capture and recording this information on the selected SAS program, it would then submit the program in the same way that the "Batch Submit" did before. In this example, it captures all required information including action and status which is used for validation and for the complete maintainance an audit trail of the program without any checkin/out type of additional effort from the user.

It is more realistic that only pivotal changes in the program code would require a version backup. In stances where smaller edits to the program are made during debugging, users would still use the "Batch Submit" selection without versioning. Once they deemed that the program has been version enough to be worthy of a version, the user would select a different choice in their right mouse selection and choose the "V - Submit SAS + Version" menu item. In this case, it would capture the update program along with all the associated user and date information followed by submitting the code.

On some of these code changes, a note describing the change is required to add meaning to the audit trail. In this case, another menu item "V - Version + Notes" is selected.

[image: image4.png]Version Backup

Path Civaldation\werkiisaspgm

Frogiam: conligh sas

Notes:

Here are some sample notes about this version of the program|

This step would capture all the information as the previous example including: backup program code, program name, user name, action, task, and date time. In addition, a short note can be entered describing the current code or logic change.

The features of creating a backup and capturing a descriptive note can be used during any type of SAS program development. However, in order to integrate this into the validation process, we need a mechanism that would lock the program for performing validation testing.

The process involves a verifier, who is a different person from the original author of the SAS program, to review the program and associated output and data. The verification may even include developing another SAS program to derive at the same results for the purpose of verification. In this case, the verifying program can use the same versioning technique for a complete audit trail. During verification, however, it makes sense to lock the original code since we do not want to be verifying a moving target. When the user initiates the validation process by selecting the menu "V - Validation", a copy is made but it also changes the file extension so that it is clear that this is no longer a program to be edited.

Upon completion of verification, the verifier can record the findings by right mouse [image: image11.png]SAS System Validation Approach

System Design
Architecture

Component
Requirements

Functional
Specfications

Test Plan

clicking on the locked program and selecting "V - Notes".

This allows the verifier to record specifically which verification tasks were performed and if the testing was successful or not. A status is recorded to determine what is to be done. If it failed, then the original programmer has to fix the problem and the verifier goes through the loop again. If it passes, it can be promoted directly to production. At each step of the way, information is captured including a descriptive note which gives context to the validation task performed.

Upon promotion to production, the programmer can choose to assign a version number. This can follow the decimal conventions such as version 1.0, 1.1, 1.2 etc…
[image: image12.wmf]Internet

VPN

MXI LAN

Windows OS Security

SAS

8

.

2

Application

SAS Data

SAS Programs

SAS Output

SAS Data Security

If the verifier promoted a program directly from the verification process with the selection of "Verication Passed + Production", this will increment the version number by one integer value automatically. By performing the promotion in a separate step, the user can increment the version number to a custom value.

If during verification, problems were identified, the original programmer will need to unlock the program to perform the fix. This is available through the menu item "V - Unlock". SyValidate allows the user to record a note pertaining to the unlocking and then it renames the file back with the (.sas) file extension for further edits. Throughout the process, all this information is centrally recorded and reports can then be generated to document the validation process. Rather than manually typing these reports, SyValidate generates these reports for you so that the process of validating SAS programs can be documented with much more detail and is a less time consuming and laborious process.

During the process of performing these validation tasks for SAS programs, you may not appreciate what impact it is having. It may seem dry and laborious at the time. In practice, however, you will find that when you are actually working with the test scripts are according to the test plan, you will discover issues will arise such as backward compatibility of SAS datasets and catalogs during a version upgrade. You will also find subtle errors and, in some cases, major bugs within your commonly used macros. The performance qualification can also encompass the use of stand alone study specific code. In many instances, the validation process reveals discrepancies that can lead to improvements to your system. The process can also solidify and help clearly define the standard operating procedures (SOP) and good programming practices within your group. If you can spend a little effort and step out of the constrained thinking of having to perform validation grudgingly and see it from a larger perspective, it can have a profound effect on your entire organization in how you and your users interact with SAS and its related data to fulfill your business objectives.

Horizontal Art placement

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

[image: image13.wmf]T

e

r

m

i

n

a

l

S

e

r

v

i

c

e

s

SAS System

Architecture

Network

Switch

(

es

)

Backup Tape Library

Tape drive

SAS

8

.

2

Client Workstations

(

Raid

5

configuration

)

W

2

K

SAS

8

.

2

Application

SAS Data

SAS Programs

SAS Output

Veritas Agent

Internet

Network Firewall

Remote Access

Laptop computer

VPN Client

Router

VPN key

MXI Fremont LAN

SAS Application

and File Server

SAS

8

.

2

Application

Terminal Server Client

Database Server

Solaris Operating System

Veritas Client

RAID Level

1

Database Application

Studies Databases

Internet

External CRO Data Sources

Coding Dictionaries

Zip files

Email Attachments

External CRO Data

In CD format

Intranet

SQL Server

File Server

Web Server

_1251006656.vsd
Tape drive

IBM Compatible

Cloud

Laptop computer

Tower box

Raid drive

Router

Server

SAS System Architecture

SAS 8.2 Application

Terminal Server Client

External CRO Data  In CD format

Intranet

Terminal Services

Network
Switch(es)

Backup Tape Library

SAS 8.2 Client Workstations

(Raid 5 configuration)
W2K
SAS 8.2 Application

SAS Data

SAS Programs

SAS Output

Veritas Agent

Internet

Router
VPN key

Network Firewall

Remote Access
Laptop computer
VPN Client

MXI Fremont LAN

SAS Application  and File Server

Database Server

Solaris Operating System
Veritas Client

RAID Level 1
Database Application

Studies Databases

Internet

External CRO Data Sources

Coding Dictionaries

Zip files
Email Attachments

SQL Server

File Server

Web Server

_1251524513.vsd
Develop System Requirements Specification

Develop Validation Test Protocol

Execute Validation Test Script

Record Test Results

Test Pass?

Report Results

File Validation Deviation (DV)

YES

NO

Deviation Type

System Problem
Reporting Form (PRF)

IS Change Control

Program or Configuration Deviation

Validation Test Protocol Deviation

Specification Change Required?

Approve/Not Approve Validation Report and Cumulative Changes

Execution Deviation

Change Required?

YES

NO

YES

NO

All Testing Performed?

YES

NO

"Red-line" typographical errors

Approved Validation Protocol

_1251006443.vsd
Tape drive

IBM Compatible

Cloud

Laptop computer

Tower box

Raid drive

SAS Data Security

MXI LAN

VPN

Internet

Windows OS Security

SAS 8.2 Application

SAS Data

SAS Programs

SAS Output

