
DM04

Helpful Hints on Developing a User Friendly Database with SAS/AF
Sy Truong, Meta-Xceed, Inc, Fremont, CA

Abstract Data Driven with Data Step
Developing an effective database application requires an interface
that is easy for the user. This paper will explore the features of
SAS/AF in SAS version 8.2 and methodologies of building a
successful database. It combines user interface suggestions for
the front end while also suggesting back end SCL, SQL and data
step logic that makes the software efficient to program and to
operate. The majority of the examples are technical tips but there
are also shared lessons learned from collaborating with end users
which prove to be very important in creating an effective
application.

One of the biggest time savings in development was to drive the
behavior of the data entry system through SAS datasets. The
data tables which contain the actual clinical data being entered
were more than just data repositories. They also acted as a
collection of metadata which drives the labels on the screens.
This is a data step example which was used to create the initial
data.

*** Define the Treatment Center ***;
data dbdata.trtcent (label="Blood
Collection at Treatment Center"
read=&password genmax=11);
 attrib srcloc label="Collection
 Source Location" length=8
 format=LOCFMT.
 unitid label="Blood Unit ID"
 length=$20
 grprh label="Blood Group and Rh"
 length=8 format=BLOODFMT.
 pcode label="Test or Control"
 length=8 format=PCODEFMT.
 coldate label="Collection Date"
 length=8 format=mmddyy6.
 usrname label="User Name"
 length=$20
 datetime label=
 "Date Time of User Interaction"
 length=8 format=DATETIME13.;
run;

Introduction
There are many solutions for creating a data entry system ranging
from a simple Excel spreadsheet to a sophisticated Oracle
database. Each set of technologies works well for a specified
task. This paper will explore a database containing clinical
information used in regulatory submission. SAS/AF is very
suitable for this since all analysis work for clinical data requires
SAS. The scenario of this particular project involved a
pharmaceutical company developing a custom database. They
had already licensed BASE SAS with very little additional
modules. One advantage of SAS/AF is that it can be rolled out to
clients that do not have SAS/AF during execution. In this
scenario, SAS was installed on a Windows 2000 server.

Windows 2000 Server

Terminal Server and SAS

Data Tables

SAS 8.2

BigRed
Database

Matched Terms

PC Clients

Terminal Server
Service

Terminal Server
Client

The data table was defined with a label of “Blood Collection at
Treatment Center”. This label was later used in a selection list for
table selection during data entry. Each variable also contained
labels. These were used for data entry screen variable selections
and labels. The user defined formats were stored in a formats
catalog. The values of these were used as coded values for pull
down menu selections. At first glance, the data being defined
appears to be purely for storing information. For efficiency, these
same attributes also affected the user’s selection choices on the
data entry screens.

One additional layer of security that was easily implemented was
to password protect the data table. In this example, it prevented
users from reading the data directly by the option
(read=&password). It forces the users to use the data export
or other reporting engines through the system. This allowed
better control over what variables were delivered to users such as
excluding unnecessary administrative variables.

SAS was delivered to users on their desktops through terminal
services. This was economical since there was only one SAS
license required. Even though SAS/AF was the main software
used during development, the programming was not all in SCL,
but also involved SQL and data step logic. It is useful to use SQL
and data step logic where ever possible, so that more SAS
programmers can understand and maintain the system in the
future. The main reason the client chose a customized solution
was because of unique requirements. It would have made an off-
the-shelf system, such as Oracle Clinical, a large investment in
infrastructure and operational procedure change. It was therefore
more effective to develop tools specific to the specific
requirements. Even though the data entry system, named
“BigRed”, was a custom effort, modularization and the use of a
data driven approach made the process much more efficient.

Another simple yet powerful option is the (genmax=11) option.
Each time the data is updated or modified, a backup is created.
In this case, there are eleven such backups made. The twelfth
data table is removed so there is always eleven backed up
versions of the data. The underlying tables can be rolled back by
actually copying the physical table into the current version. This,
however, does not capture an audit trail so a roll back interface
was created to make it easier for the administrator to maintain an
audit trail.

There are two administrative variables that exist in almost all data
tables created through the system. This included usrname
and datetime. These two fields capture the user name
along with the date time of their last interaction in relation to the
table. This may appear to be insignificant, but it is essential for
identifying who and when problems are caused.

Within the same data table creation program, a sort is applied to
key fields.

*** reatC e key fields by sorting ***;
proc sort data = dbdata.trtcent
 (read=&password);
 by unitid;
run;

This adds extra metadata to the table in a similar way that a data
set label does. That is, the data table contains an attribute
specifying what variable it is sorted by. This key is used in the
following ways:

• Resorting – After the data is updated, the data is re-
sorted by the appropriate key.

• Reporting – Many reports are resorted before a report
is generated.

• Merging – The key is used for merges for cross table
edit checks or reports.

• Keys – Key fields are also used to drive pre-populate
values for some fields and selection boxes.

A template accompanies each data table. This contains the
values to which the data entry screen defaults. This can be
updated at any time and is a big time saver for many data entry
tasks.

*** Define Treatment Center Template ***;
data dbdata.t_trtcent (label="Blood
Collection at Treatment Center");
 attrib srcloc label="Collection
 Source Location"
 length=$200
 unitid label="Blood Unit ID"
 length=$20 ...
run;

The only difference between the template and the main table is
that the table name for the template starts with a “t_” and it is not
password protected. This is a simple way to manage default
values of all data entry screens.

In a similar approach to the template, there is an associated audit
trail data table for every data table that contains clinical
information.

*** Define Treatment Center Audit Trail ***;
data dbdata.a_trtcent (label="Blood
Collection at Treatment Center"
 read=&password);
 attrib srcloc label="Collection
 Source Location" length=8
 format=LOCFMT.
 unitid label="Blood Unit ID"
 length=$20 ...
 action label="User Interaction"
 length=$100
 usrname label="User Name"
 length=$20 ...

run;

Each time a user updates, inserts or deletes a row from the main
table, the row is inserted into the accompanying audit trail data
table. There is an additional action variable in the audit trail which
documents what type of action was taken to distinguish events
such as an insert versus a delete. This data table differs from the
main table in that rather than keeping the most up-to-date data, it
keeps a complete historic record of all interactions. Since it is a
separate table, it is easy to search or generate reports from. This
also meets regulatory requirements that require a complete audit
trail of the data.

Another example of using data to drive the behavior of the system
is to store all system configurations in a data table. This captures
settings such as location of the system data or password
expiration duration time. These parameters are usually set by an
administrator during installation and configuration.

data dbsystem.config (write=&password
alter=&password);
 attrib param length=$100 label =
 "Parameters";
 attrib value length=$200 label =
 "Value";
 attrib usrname length=$20 label =
 "User Name";
 attrib datetime length=8 label =
 "Date Time" format=datetime13.;

 *** Define configuration ***;
 usrname = "admin";
 datetime=datetime();

 param="Data Location";
 value = "C:\Cerus\data"; output;
 param="Password Expiration Period";
 value = "90"; output;
 param="Password Expiration Warning";
 value = "20"; output;
 param="Sasroot";
 value = "c:\sas"; output;
 param="Sastemp";
 value = "c:\temp"; output;
 param="SAS Configuration";
 value = "c:\sas\config.sas"; output;
run;

There are several advantages to storing this information in a data
table rather than a plain ASCII file.

• Audit Trail – Similar to other tables, a user name and
date time is captured during updates. It is easy to
determine what was changed last and by whom.
Updates to the configuration require a SAS program
which also creates a log file. This log file can be saved
to retain a more detailed audit trail.

• Security – The data table can be password protected
against unauthorized users’ update. This can be
restricted to administrators only.

• Reporting – Reports can be easily generated with tools
such as PROC REPORT or PRINT. The report
displays all the current configuration settings.

Even though there are many fancy object oriented features within
the SAS Component Language (SCL), data step is still a very
useful tool for setting up and working with certain aspects of a
clinical database system.

SCL Hints
SAS Component Language has features for system development
that go beyond the data step. It is the main language for working
with objects within the interactive environment of AF, including
things such as pull down menus and buttons. It remains one of
the most powerful tools available for developing a cross platform
interactive application. The following examples are just a few
hints compared to the vast set of functions and tools available.

Rather than having an administrator set up the system datasets
during system installation, it is convenient to dynamically create
the datasets as they are being used for the first time. In this
example, the code is executed when an administrator logs into
the system.

*** Create Concurrent User Dataset ***;
if exist('dbsystem.concurent') = 0 then do;
 *** Create a new reports data set
 ***;
 dsid = open('dbsystem.concurent
 (read=mypassword)','n');
 rc = newvar(dsid,'usrname','c',20,
 'User Name');
 rc = newvar(dsid,'datetime','n',8,
 "Date Time of User Interaction",
 "datetime13.");
 rdsid = close(dsid);
end;

There are no big differences between the SCL and the data step
examples previously. The same variable attributes can be
defined in both languages, including password protecting the
dataset. However, the “exist” function of SCL is a useful function
that checks to see if the data exists before it is created. This is an
example where SCL functions help make it a powerful
development environment.

It is a common convention to have users press the F1 key to ask
for help. This exists in most Windows applications. There are
several ways to deliver help content to users. One efficient
example is to deliver HTML from an existing intranet or Internet
site.

*** Set the help file ***;
webroot = "http://localhost/";
frame.help = webroot ||
"welcome.html";

This site may already contain the complete usage and reference
manuals for the application. The link made with the user request
points to a specific page that relates to the screen where the user
is currently at. This is more efficient in that you don’t have to
develop another set of content for the help screens which is
different from the user documentation.

There are many good examples of how SQL is used within a SCL
program which is further explored in the next section. This
example shows how an SCL program captures all the dataset
names and labels with the help of some SQL code. The first step
is to narrow the list of all table names down to the specified
libname.

*** Capture all data sets ***;
submit sql continue;
 create table work.datatab
 as select lowcase(memname) as
 memname, memlabel

 from sashelp.vtable
 where libname="DBDATA" and
 memtype="DATA"
 and index(memname,'#') = 0 and
 compress(memlabel) ne '';
endsubmit;

A temporary dataset is created capturing this information from an
existing SAS system view. This same task can be done with
either a data step or SCL, but SQL is very concise and elegant in
these types of operations.

The SCL program now opens up the same temporary dataset that
was just created to capture the dataset names and labels.

*** Capture names into a list ***;
datlst = makelist();
datnlst = makelist();
dsid = open('work.datatab','i');
if dsid = 0 then do;
 call display('message.frame',
 "ERROR: Database is not accessible.");
 status = "H";
 return;
end;

SCL has functions that allow you to verify if the dataset is
available. You can therefore perform error checking to see if the
data is available. It is possible that the previous SQL code did not
work and therefore the data did not get created. In that event, the
next step would crash without a check.

Now that the data has been confirmed, the next step is to capture
the names of each table and insert them into an SCL list.

cnt = 1;
do while(fetchobs(dsid,cnt) = 0);
 curname =
 getvarc(dsid,varnum(dsid,'memname'));
 curlab =
 getvarc(dsid,varnum(dsid,'memlabel'));

 *** Skip over audit datasets ***;
 if (substr(curname,1,2) ne 'a_') and
 (substr(curname,1,2) ne 't_') then do;
 rc = insertc(datlst,curlab,-1);
 rc = insertc(datnlst,curname,-1);
 end;

 cnt = cnt +1;
end;
dsid = close(dsid);

SCL lists are a very useful and efficient construct. It is unique
compared to other data structures in that you can insert both
characters and numbers into the same list. The content of a list
can have references to other lists. SCL lists are also used to
store information for many AF objects. In this case, the pull down
selection list is assigned and pre-populated with values of the list.

 *** Update the list box with users ***;
 l_data.items = datlst;

 *** Preselect the first item ***;
 l_data.selectedIndex = 1;

A good security measure is to expire the users’ passwords after a
certain time window. It is more polite to warn the user in such an
event so a warning prior to the expiration is implemented.

*** Check for expiration beyond 90 days
***;
passdate2 = datepart(passdate);
if ((today()-(90)) > passdate2) then do;
 call display('message.frame',
 "WARNING: Your password has expired.");
 call display('_loginck.scl');
 return;
end;

*** Check for 14 days warning period ***;
if ((today()-(90-14)) > passdate2) then do;
 call display('message.frame',
 "WARNING: Your password is about to
 expire soon.");
end;

The user’s password is modified in a separate table each time it is
updated. The date is also captured through the variable
PASSDATE. This is a simplified example where a 90 day
expiration period is hard coded. The number of days can be
configurable by the administrator to an appropriate time window.
It can also be useful to have a grace period take effect after the
user password expires before the user is locked out.

There are different areas where you can store user information
within a session. The SASUSER is a predefined libname that is
available for each user. This is usually where settings are stored
for that specific user. Information stored in SASUSER is carried
from one SAS session to the next. However, the system often
needs to track a user within one login session. In this case, the
work area is more suitable.

*** Update a data in the work signifying
current user ***;
dsid = open('work.user','n');

rc = newvar(dsid,'usrname','c',20,
'User Name');
rc = newvar(dsid,'datetime','n',8,
"Date Time of User
Interaction","datetime13.");
rdsid = close(dsid);

It is similar to using a macro variable but there is no conflict with
local versus global. The work area dataset is a cleaner and more
effective approach compared to macros in the case of tracking
users within a session.

SQL Tricks
Similar to how BASE SAS integrates SQL through PROC SQL,
SCL integrates SQL through a submit block. It does this
seamlessly by preceding the SQL code with a “submit sql”
statement. This opens the door for SCL programs to any SQL
features. This offers more ways to accomplish the same tasks.
When it comes to transactional data table manipulations, SQL is
the way to go.

*** Insert an administrator new User ***;
submit sql continue;
 insert into dbsystem.users
 (read=&password)
 set usrname = "admin",
 datetime = datetime();

endsubmit;

This is a simple example of a record being inserted into the table
which registers users to the system. The “admin” account is
automatically created as the default first user. The administrator
can then set up all other user accounts. You can queue up a
series of SQL code through submit blocks. The “continue” option
tells the system to actually submit and process the SQL code at
that point. The submit block can act as a powerful code generator
of SQL code that goes beyond what traditional SAS macros can
do.

The SQL code that is submitted through SCL resolves variables
noted through the ‘&’ notation similar to how macros resolve
variables. For example, if there is a SCL variable ONOTES, it
would be referenced as &ONOTES in the SQL code. When it is
submitted, it resolves to the value which ONOTES contains. It is
recommended that whenever there is a character variable where
the user enters the value, use %NRBQUOTE.

*** Update the audit trail ***;
insert into dbdata.a_disposal
(read=&password)
set unitid = "%nrbquote(&e_unitid)",
dispcom = "%nrbquote(&onotes)",
action = "Edit existing key: &keyvalue",
usrname = "%nrbquote(&ousrname)",
datetime = datetime();

The %NRBQUOTE handles situations where the text contains a
quotation or special characters. It is a good habit to place this
around character variables since it will make the program much
more stable.

Interface Suggestions • Extranet Portal – A secured website was created for the
client to log in to obtain documents. This became a
repository of documents capturing an audit trail of
documents and also meeting discussions. The website
became the glue of the collaboration efforts. The
documents listed below were all posted on the extranet.

The user interacts with the database mainly through the
application screens. There may be some batch scripts that
administrators use but interactive dialog boxes are the user’s
interface to most functions. It is therefore important to make them
consistent and user friendly. These are some suggestions which
can enhance the user’s experience. • Meeting Summary – Meeting minutes or even diagrams

drawn from the discussions were captured as PDF and
placed on the extranet site.

• Screen Title – Every screen and dialog box contains a

consistent title centered at the top. This is a unique
short one line of text describing the purpose of the
screen.

• User Requirements, Functional Specifications and Test
Plan – Documents that require many iterations of
review became very useful to store centrally. The older
versions were also retained for reference. • Navigation Path – At the upper left corner, there is a

navigational path describing where the user is at. If the
user drills down from one screen to another, this
describes the path. For example, if the main screen is
entitled “Bioprocessing Database” and the user drills
down to “Data Table Selection”, the path would show:

Bioprocessing Database > Data Table Selection

• Time Line – At the beginning of the project, the time line
helps the upper managers allocate their resources. It
became a road map that drove the order of the work
flow.

• Online Meetings – The use of Webex to hold online
meetings was very efficient. It allowed the teams to
hold teleconferences while, at the same time, seeing
what was on each other’s screen. This helped cut
down wasted travel time.

There is nothing like face to face meetings. This is the
cornerstone of making decisions and working effectively as a
team. The suggestions above complemented the traditional
meetings and allowed the team to work together even when not
everyone was in the office at the same time.

Conclusion
A data entry system for a clinical database requires specialized
functionality. SAS/AF and its related technologies are very
suitable tools for the job. SAS Component Language (SCL) is the
primary language used in AF but it is not the only one. It has the
ability to integrate BASE data step and PROCs along with SQL.
SCL has many of its own functions that are quite powerful. When
everything is combined into one development platform, this
creates a superset that is more powerful than any one language
by itself. Even through SCL has many powerful functions, the use
of simple data step and the storing of metadata inside a data table
can be used for building a database. SQL contributes its strength
in data manipulations. These sets of technologies really take care
of the application itself. Collaborating with users during
development requires another set of technologies which involve
an extranet. These technologies are very helpful in
complementing the communication between the developer and
end users. However, nothing replaces the interactions of
traditional face to face communication.

• Consistent Buttons -- The names of buttons are
consistently named. For example, “OK” and “Cancel”
or “Back” is commonly used for most screens.

• Disable Objects -- If the user does not have access to a
certain screen due to restricted access, disabling the
objects is a good approach. The following example
disables a couple of buttons.

*** Disable buttons ***;
if write = "No" then do;
 b_template.enabled = "No";
 b_ok.enabled = "No";
end;

References

FDA, Guidance for Industry: Providing Regulatory Submissions in

Electronic Format – General Considerations, 1999
 Guidance for Industry: Providing Regulatory Submissions in

Electronic Format - NDAs , January 1999
Just as in a written document, there are styles pertaining to the
use of fonts and rules of grammar. There is a style guide for user
interface. No matter what style you decide to follow, make sure it
is consistent throughout the application.

Data structures and software can be found at:
http://www.meta-x.com
 SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Collaboration with Users
The technical challenge of working on any project is only part of
the challenge. The communication and collaboration with the
users plays a significant role in the success of the project. For
this particular project, the client was a couple hours away so there
were creative solutions which assisted in our communications.
The items below are examples from lessons learned.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

About the Author

Sy Truong is a Systems Developer for Meta-Xceed, Inc. They
may be contacted at:

Sy Truong
48501 Warm Springs Blvd. Ste 115
Fremont, CA 94539
(510) 226-1209

 sy.truong@meta-x.com

mailto:sy.truong@meta-x.com

