The Role of Onco*type* DX[®] in Breast Cancer Management

Rick Baehner, MD

Director of Pathology Genomic Health, Inc

Assistant Professor of Pathology University of California, San Francisco

- Brief overview of the Oncotype DX[®] Breast Cancer assay and reports
- Review assay development strategy and supporting studies
 - Technical feasibility studies
 - Gene discovery and refinement studies
 - Analytical validation studies
- Review clinical validation studies in women with breast cancer
 - Prognostic studies
 - Predictive studies
- Discuss Oncotype DX Breast Cancer Assay in Node Positive Patients

Case Study Presentation

- A 55-year old post-menopausal woman presents with a moderately differentiated ductal carcinoma
 - Tumor size 1.0 cm
 - ER/PR IHC positive
 - HER2 IHC negative
 - Sentinel lymph node negative
 - Excellent overall health

How should this patient be evaluated for treatment? What is her risk of disease recurrence? How likely is she to benefit from hormonal or chemotherapy?

Breast Cancer Treatment in the United States (2009)

- Approximately 110,000 women with ER+, lymph node-negative breast cancer are diagnosed annually in the United States
 - This represents ~50% of newly diagnosed patients today
 - Many women are offered chemotherapy, yet few benefit

Better identification of disease markers is needed to help make therapeutic decisions

Standard Clinical & Pathologic Metrics

Size Age Phenotype Nodal status Protein DNA

Prognostic & Predictive Markers Utilized in Breast Cancer Management

Prognostic (recurrence risk)

- Axillary node status
- Histologic type/grade
- Tumor size
- Patient age
- Lymphatic/Vascular invasion
- ER/PR status
- HER2 neu status
- Oncotype DX

These markers can be used to estimate the risk of disease recurrence

e treatment

These markers can be used to predict treatment benefit

Predictive (treatment benefit)

- ER/PR status
- HER2 neu status
- Oncotype DX

Cianfrocca and Goldstein. *Oncologist*. 2004;9(6):606-616; Lonning PE. *Ann Oncol*. 2007;18(suppl 8):viii3-viii7.

Oncotype DX® Assay

- Quantitatively predicts the likelihood of breast cancer recurrence in women with newly diagnosed, early stage invasive breast cancer
- Assesses the likely benefit from both hormonal therapy and chemotherapy
- Is the only multi-parameter gene expression assay to show clinical utility in breast cancer
- Is recommended by both ASCO and NCCN clinical practice guidelines

Harris L, et al. *J Clin Oncol*. 2007;33(25):5287-5312. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. Version 2. 2008. Available at: http://www.nccn.org/professionals/physician_gls/PDF/breast.pdf. Accessed December 8, 2008.

Oncotype DX® Report Samples

 \mathbf{O}

- Onco*type* DX[®] provides valuable information on:
 - Clinical prognosis
 - Predicted chemotherapy benefit
 - Quantitative data on ER / PR / HER2
- Node positive report contains an additional page with prognosis and predicted chemo benefit information specific to node-positive patients

Oncotype DX® Technology Development Overview

Agenda Development Overview

Technical Feasibility

Gene Discovery & Refinement

Analytical Validation

Clinical Validation (prognostic)

Clinical Validation (predictive)

Oncotype DX[®] uses RT-PCR Technology for quantitation of mRNA

Morphologic Benefit of Formalin Fixed Paraffin Embedded Tissue

Frozen block Poor morphology

FPET block Excellent morphology

Oncotype DX® Process Standardized quantitative RT-PCR

- Optimized for the small RNA fragments extracted from fixed paraffin embedded tissue (FPET)
- Optimized to be robust with regard to sources of pre-analytic variability such as
 - Delay to fixation
 - Duration of fixation
 - Fixative type
 - Sample age

Oncotype DX[®] Uses RT-PCR Technology

- RT-PCR provides >65,000fold range of measurement
 - Maximizes ability to discriminate the full range of gene expression differences among individual samples
- RT-PCR reactions can be repeated with high quantitative precision
 - Provides required reliability for individualized reporting
- RT-PCR works well with RNA from formalin-fixed paraffin-embedded tissue

Technical Feasibility Studies were Designed to Assess

- RNA yield and the quality of RNA after extraction from FPET tissues
- Gene expression differences and similarities between whole section and enriched tumor tissue sections
 - To establish criteria for manual microdissection
- Gene expression heterogeneity within breast tumor tissues
 - Assess within block and between block gene expression heterogeneity
- Selection of reference genes (important for normalization of pre-analytical factors)
 - Delay to fixation, duration of fixation, choice of fixative

Importance of Manual Microdissection

Example from study of 16 breast cancer blocks for ER expression 14 ER 12 ER Whole Section r = 0.73, p = 0.001 10 8 6 2 \cap 0 2 6 8 10 12 4 14 **ER Enriched Tumor**

- Most cases show minimal differences in ER expression between WS and ET
- Some tumors contain significant amounts of nontumor elements (e.g., biopsy cavities, skin, smooth muscle) which require manual microdissection
- Thus, if <50% invasive carcinoma, manual microdissection is always performed

Importance of Manual Microdissection

A. WS: including BxC before dissection (H&E stained) B. Marked BxC; ET labeled (H&E stained)

C. BxC after dissection (unstained)

- Of the 16 cancer-related genes there were statistically significant differences in reference normalized gene expression between ET and WS in 12 genes
 - The largest magnitudes of change were in CD68, ER, SCUBE2 and Stromelysin 3

Evaluation of Tumor Gene Expression Heterogeneity

Example of the differences in gene expression within & among 3 FPET blocks from two patients

- The three FPET blocks were step sectioned at five different levels
- Quantitative RT-PCR was performed on all 15 samples

Poster presented at: United States-Canadian Academy of Pathology 93rd Annual Meeting; March, 2004; Vancouver, British Columbia.

Importance of Standardized Quantitative Measurement using RT-PCR:

Minimal Gene Expression Heterogeneity Within & Among Tumor Blocks

Reproducibility:

- <u>Within block expression</u>: standard deviation < 0.5 normalized expression units
- <u>Among block expression</u>: standard deviation < 1.0 normalized expression units

Poster presented at: United States-Canadian Academy of Pathology 93rd Annual Meeting; March, 2004; Vancouver, British Columbia.

Oncotype DX® Technology Development Overview

Technical Feasibility

Gene Discovery & Refinement

Analytical Validation

Clinical Validation (prognostic)

Clinical Validation (predictive)

Onco*type* DX[®] Gene Panel Was Developed from Clinical Trial Evidence

- 250 cancer-related genes were selected from a number of sources:
 - Scientific literature, microarray data, genomic databases, molecular biology
- Genes were analyzed for expression and relapse-free interval correlations across 3 independent studies of 447 breast cancer patients

Study Site	N	Node Status	ER Status	Treatment
NSABP B-20, Pittsburgh, PA	233	N-	ER+	Tamoxifen (100%)
Rush University, Chicago, IL	78	≥10 positive nodes	ER+/-	Tamoxifen (54%) Chemotherapy (80%)
Providence St. Joseph's Hospital, Burbank, CA	136	N+/-	ER+/-	Tamoxifen (41%) Chemotherapy (39%)

From these studies 21 genes were selected

Paik et al. SABCS 2003. Abstract #16. Cobleigh et al. *Clin Cancer Res.* 2005;11(24 Pt 1):8623-8631. Esteban et al. *Proc ASCO 2003.* Abstract #3416.

Oncotype DX® Recurrence Score *Calculated from 21 Different Genes*

16 CANCER RELATED GENES

5 REFERENCE GENES

Beta-actin GAPDH RPLPO GUS TFRC

Onco*type* DX[®] Recurrence Score Calculation and Risk Categories

Recurrence Score =	 + 0.47 x HER2 Group Score - 0.34 x Estrogen Group Score + 1.04 x Proliferation Group Score + 0.10 x Invasion Group Score + 0.05 x CD68 - 0.08 x GSTM1 - 0.07 x BAG1
<u>Risk Group</u>	Recurrence Score
Low risk	<18
Intermediate risk	18 - 30
High risk	≥31
Paik et al. <i>N Engl J Med.</i> 2004;351:2817-2826.	

The Onco*type* DX[®] Recurrence Score is a Continuous Predictor of Recurrence Risk

Agenda Development Overview

Technical Feasibility

Gene Discovery & Refinement

Analytical Validation

Clinical Validation (prognostic)

Clinical Validation (predictive)

Oncotype DX® is Analytically Validated

Analytical validation is the assessment of assay performance characteristics and the optimal conditions to generate accuracy, precision and reproducibility

Elements of Analytic Validation

- Analytical sensitivity (limits of detection and quantitation)
- Assay precision and linear dynamic range
- Analytical reproducibility
- PCR amplification efficiency
- Sample and reagent stability
- Reagent calibration
- Instrument validation and calibration

Oncotype DX[®] Uses RT-PCR Technology

- RT-PCR provides >65,000fold range of measurement
 - Maximizes ability to discriminate the full range of gene expression differences among individual samples
- RT-PCR reactions can be repeated with high quantitative precision
 - Provides required reliability for individualized reporting
- RT-PCR works well with RNA from formalin-fixed paraffin-embedded tissue

RT-PCR Process Used by Onco*type* **DX**[®] Has a Wide Dynamic Range

Threshold cycle (CT)

Dynamic range of quantitative expression for 21 Onco*type* DX genes

 $2^{16} = 65,536$ fold

Oncotype DX® Technology Assay Sensitivity

(RT-PCR Analysis) - LOQ for HER2 mRNA

PCR Cycle Number (CT)

RNA Concentration in pg Total RNA

Increasing amounts of total RNA quantified using gene-specific primers/probes for HER2

Normalization Accounts for All Sources of Preanalytic Variability

- Delays to fixation, duration of fixation, different fixatives and sample age can affect RNA quality
- Reference normalization compensates for these differences in sample processing and sample age

Quantitative PCR Data Acquisition

Data Import Services acquire, validate, and load data as laboratory runs complete

Oncotype DX® Assay Process Steps

1) PRE-ANALYTIC

- Pathology review of the FPET sample by a Board Certified Anatomic Pathologist with breast surgical pathology expertise
 Determine whether manual microdissection for tumor enrichment is
- Determine whether manual microdissection for tumor enrichment is required (~40% of submissions are microdissected for tumor enrichment)

2) ANALYTIC

- RNA extraction and quantitation (Ribogreen[®] method)
- <u>q</u>PCR test for residual genomic DNA
- Reverse transcription
- TaqMan PCR
- Data quality control

3) POST-ANALYTIC

- Calculation of Recurrence Score[®]
- Report preparation and approval

Pre-analytic Processing

All FPET blocks are barcoded before entering histology

Pre-analytic Processing

All tumors assessed by surgical pathologists with breast expertise

Pathology review to assess:

- Is tumor present?
- Is there sufficient tumor?

Patient Samples are Barcode Tracked from Submission to Report

Automation is Central to Laboratory Processes

Patient Sample Tracking

LIMS bar-coding integrates reagents and robots for tracking and process control

Patient Report Delivery Automated Output and Delivery

PDF Report w/ Electronic Signature Approval

Agenda Development Overview

Technical Feasibility

Gene Discovery & Refinement

Analytical Validation

Clinical Validation (prognostic)

Clinical Validation (predictive)

Clinical Validation of Oncotype DX® in Node Negative Disease

Validation of the Onco*type* DX[®] Recurrence Score as a Continuous Predictor of Recurrence Risk

What is the 10-year probability of distant recurrence for a patient with a Recurrence Score of 30?

41

Oncotype DX[®] Clinical Validation: NSABP B-14

 <u>Objective</u>: Prospectively validate Recurrence Score as predictor of distant recurrence in N–, ER+ patients

 Multicenter study with pre-specified 21-gene assay, algorithm, endpoints, analysis plan

Oncotype DX® Clinical Validation: NSABP B-14 – Distant Recurrence

*10-year Distant Recurrence comparison between low-and high-risk groups: P < 0.001

Paik et al. N Engl J Med. 2004;351:2817-2826.

Multivariate Cox Proportional Hazards Regression of Age, Tumor Size, Tumor Grade and Recurrence Score in Relation to Likelihood of Distant Recurrence (NSABP B-14)

Variable	Analysis without Recurrence Score		Analysis with Recurrence Score	
	P value	HR	P value	HR
Age at surgery	0.1	0.7	0.22	0.76
Clinical tumor size	0.13	1.35	0.38	1.19
Tumor grade Moderately differentiated Poorly differentiated	0.04 <0.001 0.89	1.87 5.14 1.04	0.15 <0.001 0.06	1.55 3.34 0.51
HER2 amplification				
Estrogen-receptor protein 50-99 fmol/mg 100-199 fmol/mg	0.23 0.38 0.9	0.71 0.78 0.97	0.32 0.72 0.94	0.75 0.9 1.02
>200 fmol/mg et al. N Engl J Med. 2004:351:2817-2826.	-	-	<0.001	2.81

Paik

44

Onco*type* DX[®] NSABP B-14 Subgroup Analysis

Oncotype DX[®] NSABP B-14: Patient Age Subgroups

Oncotype DX[®] NSABP B-14: RS Subgroups by Patient Age

Oncotype DX[®] NSABP B-14: Tumor Size Subgroups

Onco*type* DX[®] NSABP B-14: RS Subgroups by Tumor Size

Onco*type* DX[®] NSABP B-14: RS Subgroups by Tumor Grade

All Patients	N = 668	
Well	224 166 41 17	
Moderate	296 139 80 77	
All Patients Poor Low Risk (RS <18) Int Risk (RS 18-30) High Risk (RS ≥31)	148 33 28 87	20% 40% 60% 80% 100% % Distant Recurrence-free at 10 Years
Paik et al. <i>N Engl J Med.</i> 2004;351:2817-2826.		% Distant Recurrence-free at 10 Years

50

Oncotype DX[®] Clinical Validation: Conclusions – NSABP B-14

- Oncotype DX[®] RS validated as predictor of recurrence in node-negative, ER+ patients
- Oncotype DX[®] RS performance exceeds standard measures (patient age, tumor size, and tumor grade)
- Oncotype DX[®] RS (based on tumor gene expression) more accurately quantifies the risk of distant recurrence than do the NCCN guidelines (based on patient age, tumor size, and tumor grade)

Oncotype DX[®] Clinical Validation: The Kaiser Permanente Study

Study Design	Matched case-control
Study Population (N = 4964)	Kaiser Permanente patients <75 years old in 14 Northern California hospitals diagnosed with node- negative breast cancer between 1985-1994, no adjuvant chemotherapy <u>Cases:</u> Deaths from BC (n = 220)
	<u>Controls</u> : Randomly selected, matched on age, race, diagnosis year, KP facility, tamoxifen (n = 570)
Data Sources	Cancer registry, medical records, archived diagnostic slides, and tumor blocks

The Kaiser Permanente Study: Risk of BC Death at 10 Years: ER+, Tam-treated Patients

Risk Classification (Recurrence Score)	10-year Absolute Risk ¹ Kaiser	10-year Absolute Risk ¹ NSABP B-14	
Low	2.8%	3.1%	
Intermediate	10.7%	12.2%	
High	15.5%	27.0%	

¹Based on methods by Langholz and Borgan, Biometrics 1997;53:767-774.

- The RS has now been shown to be strongly associated with risk of breast cancer-specific mortality among LN–, ER+, tam-treated patients participating in a clinical trial and among similar patients from the community setting.
- Results from our study suggest that combining Recurrence Score, tumor grade, and tumor size provides better risk classification than any one of these factors alone.

Agenda Development Overview

Technical Feasibility

Gene Discovery & Refinement

Analytical Validation

Clinical Validation (prognostic)

Clinical Validation (predictive)

- Breast cancer patient populations are treated as if they are homogenous
- Better segregated into those that will or will not have a benefit from a therapy
- Further divide into those that will or will not have a toxic response to a therapy

Tamoxifen Benefit & Oncotype DX®

NSABP B-14 Tamoxifen Benefit Study in N–, ER+ Patients

Objective: determine whether Oncotype DX[®] provides information on

- 1) Prognosis (likelihood of recurrence)
- 2) Response to tamoxifen (change in likelihood of recurrence with tamoxifen)
- 3) Both

B-14 Overall Benefit of Tamoxifen

All Patients (N = 645)

Paik et al. ASCO 2004; Abstract 510.

B-14 Benefit of Tamoxifen By Recurrence Score Risk Category

DISTANT RECURRENCE FREE INTERVAL

Interaction *P* = 0.06

*Results should not be used to indicate that tamoxifen should not be given to the high-risk group

58

Paik et al. ASCO 2004; Abstract 510.

Largest Benefits of Tamoxifen Observed in Low and Intermediate Risk Groups (NSABP B-14)

Oncotype DX[®] Clinical Validation: NSABP B-20

 <u>Objective</u>: To determine the relationship between RS and chemotherapy benefit in N-, ER+ patients

 Multicenter study with pre-specified 21-gene assay, algorithm, endpoints, analysis plan

High RS Correlates with Greater Benefit from Chemotherapy (NSABP B-20)

Recurrence Score Can Add Prognostic Discrimination Not Always Provided by Traditional Prognostic Factors

• <u>Age</u>

 44% of patients <40 years old had low RS (i.e., there is a large fraction of younger patients for whom chemotherapy benefit may be minimal)

• <u>Tumor size</u>

- 46% of patients with large tumors (>4 cm) had low RS
- Some patients with small tumors (<1 cm) had intermediate or high RS
- <u>Tumor grade</u>
 - Assessment by local pathologists revealed that, even for poorly differentiated tumors, 36% of patients had low RS
 - Approximately 20% of poorly differentiated tumors still had a low RS

Oncotype DX® NSABP B-20:

Many Younger Patients Have Low Recurrence Scores

Paik S, et al. J Clin Oncol. 2006;24:3726-3734.

Oncotype DX® NSABP B-20: Many Small Tumors Have Intermediate to High

Recurrence Scores

Oncotype DX® NSABP B-20: Significant Proportion of High-Grade Tumors Have Low Recurrence Scores (NSABP B-20)

Largest Benefits of Chemotherapy Observed in High Risk Groups (NSABP B-20)

Agenda Development Overview

ASCO & NCCN Guidelines

Lymph Node Positive Studies

transATAC Study Results

SWOG 8814 Study Results

Quantitative Single Gene Reporting

ER, PR and HER2 Concordance Data

Agenda Development Overview

ASCO & NCCN Guidelines

_ymph Node Positive Studies

transATAC Study Results

SWOG 8814 Study Results

Quantitative Single Gene Reporting

ER, PR and HER2 Concordance Data

ASCO Guidelines on the Use of Tumor Markers in Breast Cancer

 Oncotype DX[®] can be used to determine prognosis in newly diagnosed patients with node-negative, estrogen-receptor positive breast cancer who will receive tamoxifen

To predict risk of recurrence in patients considering treatment with tamoxifen To identify patients who are predicted to obtain the most therapeutic benefit from adjuvant tamoxifen and may not require adjuvant chemotherapy Patients with high recurrence scores appear to achieve relatively more benefit from adjuvant chemotherapy (specifically CMF) than tamoxifen

 Conclusions may not be generalizable to hormonal therapies other then tamoxifen, or to other chemotherapy regimens

NCCN Clinical Practice Guidelines

Hormone Receptor Positive, HER2 Negative Disease

Onco*type* DX[®] in Node-Positive Disease

Oncotype DX® Clinical Validation in Node-Positive Patients (ECOG trial 2197)

ECOG TRIAL 2197

Operable Breast Cancer 0-3 Positive Nodes T.1cm if Node Negative N=2885 Eligible patients

AC Doxorubicin 60 mg/m² Cyclophosphamide 600 mg/m² Every 3 weeks x 4 cycles

> Tamoxifen x 5 years If HR-Positive (Amended to Allow Als) Plus RT if indicated

AT Doxorubicin 60 mg/m² Docetaxel 60 mg/m² Every 3 weeks x 4 cycles

Tamoxifen x 5 years If HR-Positive (Amended to Allow Als) Plus RT if indicated 776 samples with genomic data, including Recurrence Score

Paraffin blocks with cancer cells occupying <5% of the section area excluded

Manual micro-dissection

RNA extraction

- No difference between arms
- Median follow-up 76 months
- 96.8% reported follow up until death or for at least 5 years
Patients with 1-3 Positive Nodes and Low RS do well without chemotherapy*

5-Year Event Rates by Nodal Status & RS

RFI (%) DFS (%) OS (%) RS Nodes Negative 96 93 95 <18 **Positive** 95 **91** 97 87 **Negative** 86 97 18-30 Positive 87 77 86 **Negative** 87 80 92 ≥ 31 Positive 75 61 72

*Including micrometastases (pN1mi)

- Low RS (<18) in patients with 1-3 positive axillary nodes may eventually be used to select individuals for a short course of chemotherapy plus hormonal therapy
- Elevated RS (≥18) may eventually be used to select individuals for participation in clinical trials evaluating novel treatment strategies, or for more aggressive chemotherapy regimens

Oncotype DX[®] Clinical Validation in Node-positive Patients (SWOG 8814 sub-analysis)

Superior Disease-Free Survival and Overall Survival over 10 Years

Albain, SABCS 2007, Abstract #10

Recurrence Score is Prognostic for Node-Positive Patients (Tamoxifen Arm)

High Recurrence Score Predictive of Chemotherapy Benefit in Node-Positive Patients

DFS BY TREATMENT & RS GROUP

Breast Cancer Specific Survival of Nodepositive Patients by Treatment and Recurrence Score[®] (RS) Group

SWOG 8814: Chemotherapy Benefit Greatest in Patients With Higher Recurrence Score[®], Regardless of Number of Positive Nodes

5-year Probability of Death or Disease Recurrence

Comparative Distribution of RS SWOG 8814: Less Low RS, More High RS

Study	Low Risk (RS < 18)	Int. Risk (RS 18-30)	High Risk (RS ≥ 31)
NSABP B14*	51%	22%	27%
NSABP B20*	54%	21%	25%
Kaiser controls	s* 56%	19%	25%
ECOG 2197**	49%	31%	20%
SWOG 8814***	40%	28%	32%

*node(-): Paik, et al. NEJM 2004 & JCO 2006; Habel, et al. Breast Ca Res Treat 2006 **node- or 1-3+: Goldstein, et al. Proc ASCO 2007 ***node+, postmenopausal: this analysis - no difference by age Single Gene Analyses might "Misclassify" the Dominant Biology of the Tumor *Example: High ER (by either Allred Score* or RT-PCR) could have High RS

Summary of Findings

- Recurrence Score[®] (RS) was prognostic in tamoxifen-alone group
 - p=0.006; HR 2.64 (95% CI 1.33-5.27)
- No apparent benefit of CAF in patients with RS<18
 - log-rank p=0.97; HR 1.02 (0.54-1.93)
- CAF improved DFS in patients with high RS
 <u>></u> 31
 - log-rank p=0.033; HR 0.59 (0.35-1.01), after adjusting for number of positive nodes
- RS by CAF treatment interaction was significant in first 5 yrs (p=0.029) but not additionally predictive beyond 5 yrs (p=0.58) although the cumulative benefit remained at 10 yrs.
- Results were similar for OS and BCSS

Risk of Distant Recurrence Using Oncotype DX[®] in Postmenopausal Primary Breast Cancer Patients Treated with Anastrozole or Tamoxifen: a TransATAC Study

Dowsett M *et al* on behalf of the ATAC Trialists' Group San Antonio Breast Cancer Symposium. 2008; Abstract 53.

Study Overview

ATAC Study Population (N=9366)

Tamoxifen

Anastrozole

Tamoxifen + Anastrozole

(combination arm not examined)

<u>Primary Analysis</u>: To determine whether Onco*type* DX[®] significantly adds to a proportional hazards model for time to distant recurrence (age, tumor size, grade, treatment) in N-, HR+, patients with no adjuvant chemotherapy

<u>Secondary analyses</u>:

- Determine whether the relationship between continuous RS and time to distant recurrence differs by nodal status or treatment arm
- Determine the relationship of predefined RS groups with time to distant recurrence by nodal status and treatment arm
- Evaluate whether RS adds to the Adjuvant! Online estimate of risk

Number of Evaluable Patients and Distant Events by Nodal Status

	Node negative	Node positive	Node unknown	Total
All	890	363	55	1308
Adjuvant chemo	-9	-55	-1	-65
HR negative	-4	-0	-0	-4
Didn't start T or A	-5	-2	-1	-8
Evaluable Patients	872 (71%)	306 (25%)	53 (4%)	1231 (100%)
Number of distant events	72	74	6	152

Distributions of the clinical variables in the 1231 evaluable (non-N Am) patients were similar to those in the 2929 ATAC (non-N Am) patients who were not included in this study

Primary Analysis: Time to Distant Recurrence and Recurrence Score Adjusted for Clinical Covariates (Node Negative Patients, Both Treatment Arms)

Variable	HR (95% CI)*	P value
Recurrence Score / 50*	5.25 (2.84, 9.73)	<0.001
Tumor Size: >2 vs. ≤2 cm	2.78 (1.70, 4.57)	<0.001
Central Grade		0.270
Moderate vs. Well	1.70 (0.75, 3.86)	
Poor vs. Well	2.06 (0.82, 5.17)	

*Multivariate analysis adjusted for treatment arm and patient age *Hazard Ratio for a 50-point increment in Recurrence Score*

Multivariate analysis confirms that the Onco*type* DX[®] Recurrence Score as a continuous variable is a highly significant predictor of time to distant recurrence

Time to Distant Recurrence by Recurrence Score Group

*Hazard Ratio for RS Group adjusted for tumor size, grade, age and treatment

Dowsett M, et al. SABCS 2008; abstract 53.

Percent with Distant Recurrence at 9 Years (Node Negative)

	# •	of events
All Patients, Low RS (n=513)		20
All Patients, Int. RS (n=229)		24
All Patients, High RS (n=130)		28
All Patients (n=872)		72
Tamoxifen, Low RS (n=245)	-	8
Tamoxifen, Int. RS (n=117)		12
Tamoxifen, High RS (n=70)	_	21
All Tamoxifen (n=432)		41
Anastrozole, Low RS (n=268)		12
Anastrozole, Int. RS (n=112)		12
Anastrozole, High RS (n=60)		7
All Anastrozole (n=440)		31
	0 10 20 30 40 50 60 70	
	Percent with Distant Recurrence at 9 Vears	2

Percent with Distant Recurrence at 9 Years (Node Positive)

	#• # •	of events
All Patients, Low RS (n=160)		25
All Patients, Int. RS (n=94)	<mark></mark>	25
All Patients, High RS (n=52)		24
All Patients (n=306)		74
Tamoxifen, Low RS (n=79)		11
Tamoxifen, Int. RS (n=47)		13
Tamoxifen, High RS (n=26)		11
All Tamoxifen (n=152)		35
Anastrozole, Low RS (n=81)		14
Anastrozole, Int. RS (n=47)		12
Anastrozole, High RS (n=26)		13
All Anastrozole (n=154)		29
	0 10 20 30 40 50 60 70 Percent with Distant Recurrence at 9 Years	6

Rate of Distant Recurrence Increases with the Number of Positive Nodes for all Recurrence Scores

ATAC Conclusions

- Confirms performance of Oncotype DX[®] Recurrence Score in postmenopausal HR+ patients treated with tamoxifen in a large contemporary population
- Demonstrates for the first time that the Oncotype DX[®] Recurrence Score is an independent predictor of distant recurrence in node negative and node positive HR+ patients treated with anastrozole
- The established relationship between Oncotype DX[®] Recurrence Score and distant recurrence for tamoxifen may be applied for anastrozole with adjustment for the lower risk of distant recurrence with the aromatase inhibitor

Reproducible Clinical Validation Essential in Changing Standard of Care

More than 4,000 Patients Studied in 12 Trials

Study	Туре	No. Pts	Nodal Status
Providence	Exploratory	136	Neg
Rush*	Exploratory	78	Pos
NSABP B-20	Exploratory	233	Neg
NSABP B-14*	Prospective	668	Neg
MD Anderson*	Prospective	149	Neg
Kaiser Permanente*	Prospective Case-Control	790 cases/controls	Neg
NSABP B-14	Prospective Placebo vs Tam	645	Neg
Milan*	Exploratory	89	Neg/Pos
NSABP B-20*	Prospective Tam vs Tam+Chemo	651	Neg
ECOG 2197*	Exploratory and Prospective	776	Neg/Pos
SWOG 8814	Prospective Tam vs Tam+Chemo	367	Positive
ATAC	Prospective Tam vs Al	1231	Neg/Pos

TAILORx Study

<u>Trial Assigning Individualized Options for Treatment</u>

- Primary objective is to determine whether adjuvant hormonal therapy is not inferior to adjuvant chemohormonal therapy for patients with RS 11-25
 - Correlates with 10-20% risk of distance recurrence at 10 years
- Potential implications
 - Reduce chemotherapy overtreatment in those likely to be treated with hormonal therapy alone
 - Reduce inadequate treatment by identifying individuals who derive great benefit from chemotherapy
 - Evaluate benefit of chemotherapy where uncertainty still exists about its utility

TAILORx Schema

<u>Trial Assigning Individualized Options for Treatment</u>

Patients with node-negative, hormone positive breast cancer

Onco*type* DX[®] Assay

Register specimen banking

Recurrence Score ≤10 Hormone therapy registry

Recurrence Score 11-25* Randomize to either hormone therapy or chemotherapy + hormone therapy

> **Recurrence Score >25** Chemotherapy + hormone therapy

*<u>Primary Study Group</u>: Recurrence Score 11-25 correlates with a 10-20% risk of distance recurrence at 10 years (upper 95% CI)